You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
419 lines
14 KiB
419 lines
14 KiB
//==============================================================================
|
|
//
|
|
// Copyright (c) 2002-
|
|
// Authors:
|
|
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// This file is part of PRISM.
|
|
//
|
|
// PRISM is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PRISM is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with PRISM; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
//==============================================================================
|
|
|
|
// includes
|
|
#include "PrismSparse.h"
|
|
#include <math.h>
|
|
#include <util.h>
|
|
#include <cudd.h>
|
|
#include <dd.h>
|
|
#include <odd.h>
|
|
#include <dv.h>
|
|
#include "sparse.h"
|
|
#include "prism.h"
|
|
#include "PrismNativeGlob.h"
|
|
#include "PrismSparseGlob.h"
|
|
#include "jnipointer.h"
|
|
#include <new>
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
JNIEXPORT jlong __jlongpointer JNICALL Java_sparse_PrismSparse_PS_1NondetReachReward
|
|
(
|
|
JNIEnv *env,
|
|
jclass cls,
|
|
jlong __jlongpointer t, // trans matrix
|
|
jlong __jlongpointer ta, // trans action labels
|
|
jobject synchs,
|
|
jlong __jlongpointer sr, // state rewards
|
|
jlong __jlongpointer trr, // transition rewards
|
|
jlong __jlongpointer od, // odd
|
|
jlong __jlongpointer rv, // row vars
|
|
jint num_rvars,
|
|
jlong __jlongpointer cv, // col vars
|
|
jint num_cvars,
|
|
jlong __jlongpointer ndv, // nondet vars
|
|
jint num_ndvars,
|
|
jlong __jlongpointer g, // 'goal' states
|
|
jlong __jlongpointer in, // 'inf' states
|
|
jlong __jlongpointer m, // 'maybe' states
|
|
jboolean min // min or max probabilities (true = min, false = max)
|
|
)
|
|
{
|
|
// cast function parameters
|
|
DdNode *trans = jlong_to_DdNode(t); // trans matrix
|
|
DdNode *trans_actions = jlong_to_DdNode(ta); // trans action labels
|
|
DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards
|
|
DdNode *trans_rewards = jlong_to_DdNode(trr); // transition rewards
|
|
ODDNode *odd = jlong_to_ODDNode(od); // reachable states
|
|
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
|
|
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
|
|
DdNode **ndvars = jlong_to_DdNode_array(ndv); // nondet vars
|
|
DdNode *goal = jlong_to_DdNode(g); // 'goal' states
|
|
DdNode *inf = jlong_to_DdNode(in); // 'inf' states
|
|
DdNode *maybe = jlong_to_DdNode(m); // 'maybe' states
|
|
|
|
// mtbdds
|
|
DdNode *a, *tmp = NULL;
|
|
// model stats
|
|
int n, nc, nc_r;
|
|
long nnz, nnz_r;
|
|
// sparse matrix
|
|
NDSparseMatrix *ndsm = NULL, *ndsm_r = NULL;
|
|
// vectors
|
|
double *sr_vec = NULL, *soln = NULL, *soln2 = NULL, *tmpsoln = NULL, *inf_vec = NULL;
|
|
// timing stuff
|
|
long start1, start2, start3, stop;
|
|
double time_taken, time_for_setup, time_for_iters;
|
|
// adversary stuff
|
|
int export_adv_enabled = export_adv;
|
|
bool adv_loop = false;
|
|
FILE *fp_adv = NULL;
|
|
int adv_j;
|
|
bool adv_new;
|
|
int *adv = NULL;
|
|
// action info
|
|
int *actions;
|
|
jstring *action_names_jstrings;
|
|
const char** action_names;
|
|
int num_actions;
|
|
// misc
|
|
int i, j, k, k_r, l1, h1, l2, h2, l2_r, h2_r, iters;
|
|
double d1, d2, x, sup_norm, kb, kbt;
|
|
bool done, first;
|
|
|
|
// exception handling around whole function
|
|
try {
|
|
|
|
// start clocks
|
|
start1 = start2 = util_cpu_time();
|
|
|
|
// get number of states
|
|
n = odd->eoff + odd->toff;
|
|
|
|
// filter out rows (goal states and infinity states) from matrix
|
|
Cudd_Ref(trans);
|
|
Cudd_Ref(maybe);
|
|
a = DD_Apply(ddman, APPLY_TIMES, trans, maybe);
|
|
|
|
// also remove goal and infinity states from state rewards vector
|
|
Cudd_Ref(state_rewards);
|
|
Cudd_Ref(maybe);
|
|
state_rewards = DD_Apply(ddman, APPLY_TIMES, state_rewards, maybe);
|
|
|
|
// and from transition rewards matrix
|
|
Cudd_Ref(trans_rewards);
|
|
Cudd_Ref(maybe);
|
|
trans_rewards = DD_Apply(ddman, APPLY_TIMES, trans_rewards, maybe);
|
|
|
|
// build sparse matrix (probs)
|
|
PS_PrintToMainLog(env, "\nBuilding sparse matrix (transitions)... ");
|
|
ndsm = build_nd_sparse_matrix(ddman, a, rvars, cvars, num_rvars, ndvars, num_ndvars, odd);
|
|
// get number of transitions/choices
|
|
nnz = ndsm->nnz;
|
|
nc = ndsm->nc;
|
|
kb = (nnz*12.0+nc*4.0+n*4.0)/1024.0;
|
|
kbt = kb;
|
|
// print out info
|
|
PS_PrintToMainLog(env, "[n=%d, nc=%d, nnz=%d, k=%d] ", n, nc, nnz, ndsm->k);
|
|
PS_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// if needed, and if info is available, build a vector of action indices for the MDP
|
|
actions = NULL;
|
|
if (export_adv_enabled != EXPORT_ADV_NONE) {
|
|
if (trans_actions != NULL) {
|
|
PS_PrintToMainLog(env, "Building action information... ");
|
|
// first need to filter out unwanted rows
|
|
Cudd_Ref(trans_actions);
|
|
Cudd_Ref(maybe);
|
|
tmp = DD_Apply(ddman, APPLY_TIMES, trans_actions, maybe);
|
|
// then convert to a vector of integer indices
|
|
actions = build_nd_action_vector(ddman, a, tmp, ndsm, rvars, cvars, num_rvars, ndvars, num_ndvars, odd);
|
|
Cudd_RecursiveDeref(ddman, tmp);
|
|
kb = n*4.0/1024.0;
|
|
kbt += kb;
|
|
PS_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
// also extract list of action names from 'synchs'
|
|
get_string_array_from_java(env, synchs, action_names_jstrings, action_names, num_actions);
|
|
} else {
|
|
PS_PrintWarningToMainLog(env, "Action labels are not available for adversary generation.", export_adv_filename);
|
|
}
|
|
}
|
|
|
|
// build sparse matrix (rewards)
|
|
PS_PrintToMainLog(env, "Building sparse matrix (transition rewards)... ");
|
|
ndsm_r = build_sub_nd_sparse_matrix(ddman, a, trans_rewards, rvars, cvars, num_rvars, ndvars, num_ndvars, odd);
|
|
// get number of transitions/choices
|
|
nnz_r = ndsm_r->nnz;
|
|
nc_r = ndsm_r->nc;
|
|
// print out info
|
|
PS_PrintToMainLog(env, "[n=%d, nc=%d, nnz=%d, k=%d] ", n, nc_r, nnz_r, ndsm_r->k);
|
|
kb = (nnz_r*12.0+nc_r*4.0+n*4.0)/1024.0;
|
|
kbt += kb;
|
|
PS_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// get vector for state rewards
|
|
PS_PrintToMainLog(env, "Creating vector for state rewards... ");
|
|
sr_vec = mtbdd_to_double_vector(ddman, state_rewards, rvars, num_rvars, odd);
|
|
kb = n*8.0/1024.0;
|
|
kbt += kb;
|
|
PS_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// get vector for yes
|
|
PS_PrintToMainLog(env, "Creating vector for inf... ");
|
|
inf_vec = mtbdd_to_double_vector(ddman, inf, rvars, num_rvars, odd);
|
|
kb = n*8.0/1024.0;
|
|
kbt += kb;
|
|
PS_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// create solution/iteration vectors
|
|
PS_PrintToMainLog(env, "Allocating iteration vectors... ");
|
|
soln = new double[n];
|
|
soln2 = new double[n];
|
|
kb = n*8.0/1024.0;
|
|
kbt += 2*kb;
|
|
PS_PrintMemoryToMainLog(env, "[2 x ", kb, "]\n");
|
|
|
|
// if required, create storage for adversary and initialise
|
|
if (export_adv_enabled != EXPORT_ADV_NONE) {
|
|
PS_PrintToMainLog(env, "Allocating adversary vector... ");
|
|
adv = new int[n];
|
|
kb = n*sizeof(int)/1024.0;
|
|
kbt += kb;
|
|
PS_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
// Initialise all entries to -1 ("don't know")
|
|
for (i = 0; i < n; i++) {
|
|
adv[i] = -1;
|
|
}
|
|
}
|
|
|
|
// print total memory usage
|
|
PS_PrintMemoryToMainLog(env, "TOTAL: [", kbt, "]\n");
|
|
|
|
// initial solution is infinity in 'inf' states, zero elsewhere
|
|
for (i = 0; i < n; i++) {
|
|
soln[i] = (inf_vec[i] > 0) ? HUGE_VAL : 0.0;
|
|
}
|
|
|
|
// get setup time
|
|
stop = util_cpu_time();
|
|
time_for_setup = (double)(stop - start2)/1000;
|
|
start2 = stop;
|
|
start3 = stop;
|
|
|
|
// start iterations
|
|
iters = 0;
|
|
done = false;
|
|
PS_PrintToMainLog(env, "\nStarting iterations...\n");
|
|
|
|
// open file to store adversary (if required)
|
|
if (export_adv_enabled != EXPORT_ADV_NONE) {
|
|
fp_adv = fopen(export_adv_filename, "w");
|
|
if (fp_adv) {
|
|
fprintf(fp_adv, "%d ?\n", n);
|
|
} else {
|
|
PS_PrintWarningToMainLog(env, "Adversary generation cancelled (could not open file \"%s\").", export_adv_filename);
|
|
export_adv_enabled = EXPORT_ADV_NONE;
|
|
}
|
|
}
|
|
|
|
// store local copies of stuff
|
|
// firstly for transition matrix
|
|
double *non_zeros = ndsm->non_zeros;
|
|
unsigned char *row_counts = ndsm->row_counts;
|
|
int *row_starts = (int *)ndsm->row_counts;
|
|
unsigned char *choice_counts = ndsm->choice_counts;
|
|
int *choice_starts = (int *)ndsm->choice_counts;
|
|
bool use_counts = ndsm->use_counts;
|
|
unsigned int *cols = ndsm->cols;
|
|
// and then for transition rewards matrix
|
|
// (note: we don't need row_counts/row_starts for
|
|
// this since choice structure mirrors transition matrix)
|
|
double *non_zeros_r = ndsm_r->non_zeros;
|
|
unsigned char *choice_counts_r = ndsm_r->choice_counts;
|
|
int *choice_starts_r = (int *)ndsm_r->choice_counts;
|
|
bool use_counts_r = ndsm_r->use_counts;
|
|
unsigned int *cols_r = ndsm_r->cols;
|
|
|
|
while (!done && iters < max_iters) {
|
|
|
|
iters++;
|
|
|
|
// do matrix multiplication and min/max
|
|
h1 = h2 = h2_r = 0;
|
|
// loop through states
|
|
for (i = 0; i < n; i++) {
|
|
d1 = 0.0; // initial value doesn't matter
|
|
first = true; // (because we also remember 'first')
|
|
adv_new = false;
|
|
// get pointers to nondeterministic choices for state i
|
|
if (!use_counts) { l1 = row_starts[i]; h1 = row_starts[i+1]; }
|
|
else { l1 = h1; h1 += row_counts[i]; }
|
|
// loop through those choices
|
|
for (j = l1; j < h1; j++) {
|
|
// compute the reward value for state i for this iteration
|
|
// start with state reward for this state
|
|
d2 = sr_vec[i];
|
|
// get pointers to transitions
|
|
if (!use_counts) { l2 = choice_starts[j]; h2 = choice_starts[j+1]; }
|
|
else { l2 = h2; h2 += choice_counts[j]; }
|
|
// and get pointers to transition rewards
|
|
if (!use_counts_r) { l2_r = choice_starts_r[j]; h2_r = choice_starts_r[j+1]; }
|
|
else { l2_r = h2_r; h2_r += choice_counts_r[j]; }
|
|
// loop through transitions
|
|
for (k = l2; k < h2; k++) {
|
|
// find corresponding transition reward if any
|
|
k_r = l2_r; while (k_r < h2_r && cols_r[k_r] != cols[k]) k_r++;
|
|
// if there is one, add reward * prob to reward value
|
|
if (k_r < h2_r) { d2 += non_zeros_r[k_r] * non_zeros[k]; k_r++; }
|
|
// add prob * corresponding reward from previous iteration
|
|
d2 += non_zeros[k] * soln[cols[k]];
|
|
}
|
|
// see if this value is the min/max so far
|
|
if (first || (min&&(d2<d1)) || (!min&&(d2>d1))) {
|
|
d1 = d2;
|
|
// if adversary generation is enabled, remember optimal choice
|
|
if (export_adv_enabled != EXPORT_ADV_NONE) {
|
|
// for max, only remember strictly better choices
|
|
// (this resolves problems with end components)
|
|
if (!min) {
|
|
if (adv[i] == -1 || (d1>soln[i])) {
|
|
adv[i] = j;
|
|
}
|
|
}
|
|
// for min, this is straightforward
|
|
// (in fact, could do it at the end of value iteration, but we don't)
|
|
else {
|
|
adv[i] = j;
|
|
}
|
|
}
|
|
}
|
|
first = false;
|
|
}
|
|
// set vector element
|
|
// (if there were no choices from this state, reward is zero/infinity)
|
|
soln2[i] = (h1 > l1) ? d1 : inf_vec[i] > 0 ? HUGE_VAL : 0;
|
|
}
|
|
|
|
// check convergence
|
|
sup_norm = 0.0;
|
|
for (i = 0; i < n; i++) {
|
|
x = fabs(soln2[i] - soln[i]);
|
|
if (term_crit == TERM_CRIT_RELATIVE) {
|
|
x /= soln2[i];
|
|
}
|
|
if (x > sup_norm) sup_norm = x;
|
|
}
|
|
if (sup_norm < term_crit_param) {
|
|
done = true;
|
|
}
|
|
|
|
// print occasional status update
|
|
if ((util_cpu_time() - start3) > UPDATE_DELAY) {
|
|
PS_PrintToMainLog(env, "Iteration %d: max %sdiff=%f", iters, (term_crit == TERM_CRIT_RELATIVE)?"relative ":"", sup_norm);
|
|
PS_PrintToMainLog(env, ", %.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000));
|
|
start3 = util_cpu_time();
|
|
}
|
|
|
|
// prepare for next iteration
|
|
tmpsoln = soln;
|
|
soln = soln2;
|
|
soln2 = tmpsoln;
|
|
|
|
// if we're done, but adversary generation is required, go round once more
|
|
if (done && adv) adv_loop = !adv_loop;
|
|
}
|
|
|
|
// Traverse matrix to extract adversary
|
|
if (export_adv_enabled != EXPORT_ADV_NONE) {
|
|
h1 = h2 = 0;
|
|
for (i = 0; i < n; i++) {
|
|
if (!use_counts) { l1 = row_starts[i]; h1 = row_starts[i+1]; }
|
|
else { l1 = h1; h1 += row_counts[i]; }
|
|
// Have to loop through all choices (to compute offsets)
|
|
for (j = l1; j < h1; j++) {
|
|
if (!use_counts) { l2 = choice_starts[j]; h2 = choice_starts[j+1]; }
|
|
else { l2 = h2; h2 += choice_counts[j]; }
|
|
// But only output a choice if it is in the adversary
|
|
if (j == adv[i]) {
|
|
for (k = l2; k < h2; k++) {
|
|
switch (export_adv_enabled) {
|
|
case EXPORT_ADV_DTMC:
|
|
fprintf(fp_adv, "%d %d %g", i, cols[k], non_zeros[k]); break;
|
|
case EXPORT_ADV_MDP:
|
|
fprintf(fp_adv, "%d 0 %d %g", i, cols[k], non_zeros[k]); break;
|
|
}
|
|
if (actions != NULL) fprintf(fp_adv, " %s", actions[j]>0?action_names[actions[j]-1]:"");
|
|
fprintf(fp_adv, "\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// stop clocks
|
|
stop = util_cpu_time();
|
|
time_for_iters = (double)(stop - start2)/1000;
|
|
time_taken = (double)(stop - start1)/1000;
|
|
|
|
// print iterations/timing info
|
|
PS_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup);
|
|
|
|
// if the iterative method didn't terminate, this is an error
|
|
if (!done) { delete soln; soln = NULL; PS_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); }
|
|
|
|
// close file to store adversary (if required)
|
|
if (export_adv_enabled != EXPORT_ADV_NONE) {
|
|
fclose(fp_adv);
|
|
PS_PrintToMainLog(env, "\nAdversary written to file \"%s\".\n", export_adv_filename);
|
|
}
|
|
|
|
// catch exceptions: register error, free memory
|
|
} catch (std::bad_alloc e) {
|
|
PS_SetErrorMessage("Out of memory");
|
|
if (soln) delete[] soln;
|
|
soln = 0;
|
|
}
|
|
|
|
// free memory
|
|
if (a) Cudd_RecursiveDeref(ddman, a);
|
|
if (state_rewards) Cudd_RecursiveDeref(ddman, state_rewards);
|
|
if (trans_rewards) Cudd_RecursiveDeref(ddman, trans_rewards);
|
|
if (ndsm) delete ndsm;
|
|
if (ndsm_r) delete ndsm_r;
|
|
if (inf_vec) delete[] inf_vec;
|
|
if (sr_vec) delete[] sr_vec;
|
|
if (soln2) delete[] soln2;
|
|
if (adv) delete[] adv;
|
|
if (actions != NULL) {
|
|
delete[] actions;
|
|
release_string_array_from_java(env, action_names_jstrings, action_names, num_actions);
|
|
}
|
|
|
|
return ptr_to_jlong(soln);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|