//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford, formerly University of Birmingham) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== // includes #include "PrismSparse.h" #include #include #include #include #include #include #include "sparse.h" #include "prism.h" #include "PrismNativeGlob.h" #include "PrismSparseGlob.h" #include "jnipointer.h" #include //------------------------------------------------------------------------------ JNIEXPORT jlong __jlongpointer JNICALL Java_sparse_PrismSparse_PS_1NondetReachReward ( JNIEnv *env, jclass cls, jlong __jlongpointer t, // trans matrix jlong __jlongpointer ta, // trans action labels jobject synchs, jlong __jlongpointer sr, // state rewards jlong __jlongpointer trr, // transition rewards jlong __jlongpointer od, // odd jlong __jlongpointer rv, // row vars jint num_rvars, jlong __jlongpointer cv, // col vars jint num_cvars, jlong __jlongpointer ndv, // nondet vars jint num_ndvars, jlong __jlongpointer g, // 'goal' states jlong __jlongpointer in, // 'inf' states jlong __jlongpointer m, // 'maybe' states jboolean min // min or max probabilities (true = min, false = max) ) { // cast function parameters DdNode *trans = jlong_to_DdNode(t); // trans matrix DdNode *trans_actions = jlong_to_DdNode(ta); // trans action labels DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards DdNode *trans_rewards = jlong_to_DdNode(trr); // transition rewards ODDNode *odd = jlong_to_ODDNode(od); // reachable states DdNode **rvars = jlong_to_DdNode_array(rv); // row vars DdNode **cvars = jlong_to_DdNode_array(cv); // col vars DdNode **ndvars = jlong_to_DdNode_array(ndv); // nondet vars DdNode *goal = jlong_to_DdNode(g); // 'goal' states DdNode *inf = jlong_to_DdNode(in); // 'inf' states DdNode *maybe = jlong_to_DdNode(m); // 'maybe' states // mtbdds DdNode *a, *tmp = NULL; // model stats int n, nc, nc_r; long nnz, nnz_r; // sparse matrix NDSparseMatrix *ndsm = NULL, *ndsm_r = NULL; // vectors double *sr_vec = NULL, *soln = NULL, *soln2 = NULL, *tmpsoln = NULL, *inf_vec = NULL; // timing stuff long start1, start2, start3, stop; double time_taken, time_for_setup, time_for_iters; // adversary stuff int export_adv_enabled = export_adv; bool adv_loop = false; FILE *fp_adv = NULL; int adv_j; bool adv_new; int *adv = NULL; // action info int *actions; jstring *action_names_jstrings; const char** action_names; int num_actions; // misc int i, j, k, k_r, l1, h1, l2, h2, l2_r, h2_r, iters; double d1, d2, x, sup_norm, kb, kbt; bool done, first; // exception handling around whole function try { // start clocks start1 = start2 = util_cpu_time(); // get number of states n = odd->eoff + odd->toff; // filter out rows (goal states and infinity states) from matrix Cudd_Ref(trans); Cudd_Ref(maybe); a = DD_Apply(ddman, APPLY_TIMES, trans, maybe); // also remove goal and infinity states from state rewards vector Cudd_Ref(state_rewards); Cudd_Ref(maybe); state_rewards = DD_Apply(ddman, APPLY_TIMES, state_rewards, maybe); // and from transition rewards matrix Cudd_Ref(trans_rewards); Cudd_Ref(maybe); trans_rewards = DD_Apply(ddman, APPLY_TIMES, trans_rewards, maybe); // build sparse matrix (probs) PS_PrintToMainLog(env, "\nBuilding sparse matrix (transitions)... "); ndsm = build_nd_sparse_matrix(ddman, a, rvars, cvars, num_rvars, ndvars, num_ndvars, odd); // get number of transitions/choices nnz = ndsm->nnz; nc = ndsm->nc; kb = (nnz*12.0+nc*4.0+n*4.0)/1024.0; kbt = kb; // print out info PS_PrintToMainLog(env, "[n=%d, nc=%d, nnz=%d, k=%d] ", n, nc, nnz, ndsm->k); PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // if needed, and if info is available, build a vector of action indices for the MDP actions = NULL; if (export_adv_enabled != EXPORT_ADV_NONE) { if (trans_actions != NULL) { PS_PrintToMainLog(env, "Building action information... "); // first need to filter out unwanted rows Cudd_Ref(trans_actions); Cudd_Ref(maybe); tmp = DD_Apply(ddman, APPLY_TIMES, trans_actions, maybe); // then convert to a vector of integer indices actions = build_nd_action_vector(ddman, a, tmp, ndsm, rvars, cvars, num_rvars, ndvars, num_ndvars, odd); Cudd_RecursiveDeref(ddman, tmp); kb = n*4.0/1024.0; kbt += kb; PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // also extract list of action names from 'synchs' get_string_array_from_java(env, synchs, action_names_jstrings, action_names, num_actions); } else { PS_PrintWarningToMainLog(env, "Action labels are not available for adversary generation.", export_adv_filename); } } // build sparse matrix (rewards) PS_PrintToMainLog(env, "Building sparse matrix (transition rewards)... "); ndsm_r = build_sub_nd_sparse_matrix(ddman, a, trans_rewards, rvars, cvars, num_rvars, ndvars, num_ndvars, odd); // get number of transitions/choices nnz_r = ndsm_r->nnz; nc_r = ndsm_r->nc; // print out info PS_PrintToMainLog(env, "[n=%d, nc=%d, nnz=%d, k=%d] ", n, nc_r, nnz_r, ndsm_r->k); kb = (nnz_r*12.0+nc_r*4.0+n*4.0)/1024.0; kbt += kb; PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // get vector for state rewards PS_PrintToMainLog(env, "Creating vector for state rewards... "); sr_vec = mtbdd_to_double_vector(ddman, state_rewards, rvars, num_rvars, odd); kb = n*8.0/1024.0; kbt += kb; PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // get vector for yes PS_PrintToMainLog(env, "Creating vector for inf... "); inf_vec = mtbdd_to_double_vector(ddman, inf, rvars, num_rvars, odd); kb = n*8.0/1024.0; kbt += kb; PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // create solution/iteration vectors PS_PrintToMainLog(env, "Allocating iteration vectors... "); soln = new double[n]; soln2 = new double[n]; kb = n*8.0/1024.0; kbt += 2*kb; PS_PrintMemoryToMainLog(env, "[2 x ", kb, "]\n"); // if required, create storage for adversary and initialise if (export_adv_enabled != EXPORT_ADV_NONE) { PS_PrintToMainLog(env, "Allocating adversary vector... "); adv = new int[n]; kb = n*sizeof(int)/1024.0; kbt += kb; PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // Initialise all entries to -1 ("don't know") for (i = 0; i < n; i++) { adv[i] = -1; } } // print total memory usage PS_PrintMemoryToMainLog(env, "TOTAL: [", kbt, "]\n"); // initial solution is infinity in 'inf' states, zero elsewhere for (i = 0; i < n; i++) { soln[i] = (inf_vec[i] > 0) ? HUGE_VAL : 0.0; } // get setup time stop = util_cpu_time(); time_for_setup = (double)(stop - start2)/1000; start2 = stop; start3 = stop; // start iterations iters = 0; done = false; PS_PrintToMainLog(env, "\nStarting iterations...\n"); // open file to store adversary (if required) if (export_adv_enabled != EXPORT_ADV_NONE) { fp_adv = fopen(export_adv_filename, "w"); if (fp_adv) { fprintf(fp_adv, "%d ?\n", n); } else { PS_PrintWarningToMainLog(env, "Adversary generation cancelled (could not open file \"%s\").", export_adv_filename); export_adv_enabled = EXPORT_ADV_NONE; } } // store local copies of stuff // firstly for transition matrix double *non_zeros = ndsm->non_zeros; unsigned char *row_counts = ndsm->row_counts; int *row_starts = (int *)ndsm->row_counts; unsigned char *choice_counts = ndsm->choice_counts; int *choice_starts = (int *)ndsm->choice_counts; bool use_counts = ndsm->use_counts; unsigned int *cols = ndsm->cols; // and then for transition rewards matrix // (note: we don't need row_counts/row_starts for // this since choice structure mirrors transition matrix) double *non_zeros_r = ndsm_r->non_zeros; unsigned char *choice_counts_r = ndsm_r->choice_counts; int *choice_starts_r = (int *)ndsm_r->choice_counts; bool use_counts_r = ndsm_r->use_counts; unsigned int *cols_r = ndsm_r->cols; while (!done && iters < max_iters) { iters++; // do matrix multiplication and min/max h1 = h2 = h2_r = 0; // loop through states for (i = 0; i < n; i++) { d1 = 0.0; // initial value doesn't matter first = true; // (because we also remember 'first') adv_new = false; // get pointers to nondeterministic choices for state i if (!use_counts) { l1 = row_starts[i]; h1 = row_starts[i+1]; } else { l1 = h1; h1 += row_counts[i]; } // loop through those choices for (j = l1; j < h1; j++) { // compute the reward value for state i for this iteration // start with state reward for this state d2 = sr_vec[i]; // get pointers to transitions if (!use_counts) { l2 = choice_starts[j]; h2 = choice_starts[j+1]; } else { l2 = h2; h2 += choice_counts[j]; } // and get pointers to transition rewards if (!use_counts_r) { l2_r = choice_starts_r[j]; h2_r = choice_starts_r[j+1]; } else { l2_r = h2_r; h2_r += choice_counts_r[j]; } // loop through transitions for (k = l2; k < h2; k++) { // find corresponding transition reward if any k_r = l2_r; while (k_r < h2_r && cols_r[k_r] != cols[k]) k_r++; // if there is one, add reward * prob to reward value if (k_r < h2_r) { d2 += non_zeros_r[k_r] * non_zeros[k]; k_r++; } // add prob * corresponding reward from previous iteration d2 += non_zeros[k] * soln[cols[k]]; } // see if this value is the min/max so far if (first || (min&&(d2d1))) { d1 = d2; // if adversary generation is enabled, remember optimal choice if (export_adv_enabled != EXPORT_ADV_NONE) { // for max, only remember strictly better choices // (this resolves problems with end components) if (!min) { if (adv[i] == -1 || (d1>soln[i])) { adv[i] = j; } } // for min, this is straightforward // (in fact, could do it at the end of value iteration, but we don't) else { adv[i] = j; } } } first = false; } // set vector element // (if there were no choices from this state, reward is zero/infinity) soln2[i] = (h1 > l1) ? d1 : inf_vec[i] > 0 ? HUGE_VAL : 0; } // check convergence sup_norm = 0.0; for (i = 0; i < n; i++) { x = fabs(soln2[i] - soln[i]); if (term_crit == TERM_CRIT_RELATIVE) { x /= soln2[i]; } if (x > sup_norm) sup_norm = x; } if (sup_norm < term_crit_param) { done = true; } // print occasional status update if ((util_cpu_time() - start3) > UPDATE_DELAY) { PS_PrintToMainLog(env, "Iteration %d: max %sdiff=%f", iters, (term_crit == TERM_CRIT_RELATIVE)?"relative ":"", sup_norm); PS_PrintToMainLog(env, ", %.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000)); start3 = util_cpu_time(); } // prepare for next iteration tmpsoln = soln; soln = soln2; soln2 = tmpsoln; // if we're done, but adversary generation is required, go round once more if (done && adv) adv_loop = !adv_loop; } // Traverse matrix to extract adversary if (export_adv_enabled != EXPORT_ADV_NONE) { h1 = h2 = 0; for (i = 0; i < n; i++) { if (!use_counts) { l1 = row_starts[i]; h1 = row_starts[i+1]; } else { l1 = h1; h1 += row_counts[i]; } // Have to loop through all choices (to compute offsets) for (j = l1; j < h1; j++) { if (!use_counts) { l2 = choice_starts[j]; h2 = choice_starts[j+1]; } else { l2 = h2; h2 += choice_counts[j]; } // But only output a choice if it is in the adversary if (j == adv[i]) { for (k = l2; k < h2; k++) { switch (export_adv_enabled) { case EXPORT_ADV_DTMC: fprintf(fp_adv, "%d %d %g", i, cols[k], non_zeros[k]); break; case EXPORT_ADV_MDP: fprintf(fp_adv, "%d 0 %d %g", i, cols[k], non_zeros[k]); break; } if (actions != NULL) fprintf(fp_adv, " %s", actions[j]>0?action_names[actions[j]-1]:""); fprintf(fp_adv, "\n"); } } } } } // stop clocks stop = util_cpu_time(); time_for_iters = (double)(stop - start2)/1000; time_taken = (double)(stop - start1)/1000; // print iterations/timing info PS_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup); // if the iterative method didn't terminate, this is an error if (!done) { delete soln; soln = NULL; PS_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); } // close file to store adversary (if required) if (export_adv_enabled != EXPORT_ADV_NONE) { fclose(fp_adv); PS_PrintToMainLog(env, "\nAdversary written to file \"%s\".\n", export_adv_filename); } // catch exceptions: register error, free memory } catch (std::bad_alloc e) { PS_SetErrorMessage("Out of memory"); if (soln) delete[] soln; soln = 0; } // free memory if (a) Cudd_RecursiveDeref(ddman, a); if (state_rewards) Cudd_RecursiveDeref(ddman, state_rewards); if (trans_rewards) Cudd_RecursiveDeref(ddman, trans_rewards); if (ndsm) delete ndsm; if (ndsm_r) delete ndsm_r; if (inf_vec) delete[] inf_vec; if (sr_vec) delete[] sr_vec; if (soln2) delete[] soln2; if (adv) delete[] adv; if (actions != NULL) { delete[] actions; release_string_array_from_java(env, action_names_jstrings, action_names, num_actions); } return ptr_to_jlong(soln); } //------------------------------------------------------------------------------