You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

455 lines
15 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
// * Rashid Mehmood <rxm@cs.bham.ac.uk> (University of Birmingham)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
// includes
#include "PrismHybrid.h"
#include <math.h>
#include <util.h>
#include <cudd.h>
#include <dd.h>
#include <odd.h>
#include <dv.h>
#include "sparse.h"
#include "hybrid.h"
#include "PrismHybridGlob.h"
#include "jnipointer.h"
// local prototypes
static void psor_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose);
static void psor_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset);
static void psor_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset);
// globals (used by local functions)
static HDDNode *zero;
static int num_levels;
static bool compact_sm;
static double *sm_dist;
static int sm_dist_shift;
static int sm_dist_mask;
static double *soln, *soln2;
//------------------------------------------------------------------------------
// solve the linear equation system Ax=b with Pseudo Gauss-Seidel/SOR
JNIEXPORT jlong __pointer JNICALL Java_hybrid_PrismHybrid_PH_1PSOR
(
JNIEnv *env,
jclass cls,
jlong __pointer _odd, // odd
jlong __pointer rv, // row vars
jint num_rvars,
jlong __pointer cv, // col vars
jint num_cvars,
jlong __pointer _a, // matrix A
jlong __pointer _b, // vector b (if null, assume all zero)
jlong __pointer _init, // init soln
jboolean transpose, // transpose A? (i.e. solve xA=b not Ax=b?)
jboolean row_sums, // use row sums for diags instead? (strictly speaking: negative sum of non-diagonal row elements)
jdouble omega, // omega (over-relaxation parameter)
jboolean forwards // forwards or backwards?
)
{
// cast function parameters
ODDNode *odd = jlong_to_ODDNode(_odd); // odd
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
DdNode *a = jlong_to_DdNode(_a); // matrix A
DdNode *b = jlong_to_DdNode(_b); // vector b
DdNode *init = jlong_to_DdNode(_init); // init soln
// mtbdds
DdNode *reach, *diags, *id, *tmp;
// model stats
int n;
long nnz;
// flags
bool compact_d, compact_b;
// matrix mtbdd
HDDMatrix *hddm;
HDDNode *hdd;
// vectors
double *diags_vec, *b_vec;
DistVector *diags_dist, *b_dist;
// timing stuff
long start1, start2, start3, stop;
double time_taken, time_for_setup, time_for_iters;
// misc
int i, j, fb, l, h, i2, j2, fb2, l2, h2, iters;
double d, x, sup_norm, kb, kbt;
bool done;
// start clocks
start1 = start2 = util_cpu_time();
// get number of states
n = odd->eoff + odd->toff;
// get reachable states
reach = odd->dd;
// make local copy of a
Cudd_Ref(a);
// remove and keep diagonal entries of matrix A
id = DD_Identity(ddman, rvars, cvars, num_rvars);
Cudd_Ref(reach);
id = DD_And(ddman, id, reach);
Cudd_Ref(id);
Cudd_Ref(a);
diags = DD_Apply(ddman, APPLY_TIMES, id, a);
Cudd_Ref(id);
a = DD_ITE(ddman, id, DD_Constant(ddman, 0), a);
// build hdd for matrix
PH_PrintToMainLog(env, "\nBuilding hybrid MTBDD matrix... ");
hddm = build_hdd_matrix(a, rvars, cvars, num_rvars, odd, true, transpose);
hdd = hddm->top;
zero = hddm->zero;
num_levels = hddm->num_levels;
kb = hddm->mem_nodes;
kbt = kb;
PH_PrintToMainLog(env, "[levels=%d, nodes=%d] [%.1f KB]\n", hddm->num_levels, hddm->num_nodes, kb);
// split hdd matrix into blocks
// nb: in terms of memory, this gets precedence over sparse matrices
PH_PrintToMainLog(env, "Splitting into blocks... ");
split_hdd_matrix(hddm, compact, false, transpose);
compact_b = hddm->compact_b;
kb = hddm->mem_b;
kbt += kb;
PH_PrintToMainLog(env, "[levels=%d, n=%d, nnz=%d%s] [%.1f KB]\n", hddm->l_b, hddm->blocks->n, hddm->blocks->nnz, compact_b?", compact":"", kb);
// add sparse matrices
PH_PrintToMainLog(env, "Adding explicit sparse matrices... ");
add_sparse_matrices(hddm, compact, false, transpose);
compact_sm = hddm->compact_sm;
if (compact_sm) {
sm_dist = hddm->dist;
sm_dist_shift = hddm->dist_shift;
sm_dist_mask = hddm->dist_mask;
}
kb = hddm->mem_sm;
kbt += kb;
PH_PrintToMainLog(env, "[levels=%d, num=%d%s] [%.1f KB]\n", hddm->l_sm, hddm->num_sm, compact_sm?", compact":"", kb);
// get vector of diags, either by extracting from mtbdd or
// by doing (negative, non-diagonal) row sums of original A matrix (and then setting to 1 if sum is 0)
// (the latter is a fix for steady-state solution of a subsystem e.g. a BSCC)
PH_PrintToMainLog(env, "Creating vector for diagonals... ");
if (!row_sums) {
diags = DD_MaxAbstract(ddman, diags, cvars, num_cvars);
diags_vec = mtbdd_to_double_vector(ddman, diags, rvars, num_rvars, odd);
} else {
diags_vec = hdd_negative_row_sums(hddm, n, transpose);
}
// if any of the diagonals are zero, set them to one - avoids division by zero errors later
// strictly speaking, such matrices shouldn't work for this iterative method
// but they do occur, e.g. for steady-state computation of a bscc, this fixes it
for (i = 0; i < n; i++) diags_vec[i] = (diags_vec[i] == 0) ? 1.0 : diags_vec[i];
// try and convert to compact form if required
compact_d = false;
if (compact) {
if (diags_dist = double_vector_to_dist(diags_vec, n)) {
compact_d = true;
free(diags_vec);
}
}
kb = (!compact_d) ? n*8.0/1024.0 : (diags_dist->num_dist*8.0+n*2.0)/1024.0;
kbt += kb;
if (!compact_d) PH_PrintToMainLog(env, "[%.1f KB]\n", kb);
else PH_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", diags_dist->num_dist, kb);
// invert diagonal
if (!compact_d) {
for (i = 0; i < n; i++) diags_vec[i] = 1.0 / diags_vec[i];
} else {
for (i = 0; i < diags_dist->num_dist; i++) diags_dist->dist[i] = 1.0 / diags_dist->dist[i];
}
// build b vector (if present)
if (b != NULL) {
PH_PrintToMainLog(env, "Creating vector for RHS... ");
b_vec = mtbdd_to_double_vector(ddman, b, rvars, num_rvars, odd);
// try and convert to compact form if required
compact_b = false;
if (compact) {
if (b_dist = double_vector_to_dist(b_vec, n)) {
compact_b = true;
free(b_vec);
}
}
kb = (!compact_b) ? n*8.0/1024.0 : (b_dist->num_dist*8.0+n*2.0)/1024.0;
kbt += kb;
if (!compact_b) PH_PrintToMainLog(env, "[%.1f KB]\n", kb);
else PH_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", b_dist->num_dist, kb);
}
// create solution/iteration vectors
PH_PrintToMainLog(env, "Allocating iteration vectors... ");
soln = mtbdd_to_double_vector(ddman, init, rvars, num_rvars, odd);
soln2 = (double*)calloc(hddm->blocks->max, sizeof(double));
if (!soln2) fatal(" soln2 buffer allocation problem");
kb = (n*8.0/1024.0)+(hddm->blocks->max*8.0/1024.0);
kbt += kb;
PH_PrintToMainLog(env, "[%.1f + %.1f = %.1f KB]\n", (n*8.0/1024.0), (hddm->blocks->max*8.0/1024.0), kb);
// print total memory usage
PH_PrintToMainLog(env, "TOTAL: [%.1f KB]\n", kbt);
// get setup time
stop = util_cpu_time();
time_for_setup = (double)(stop - start2)/1000;
start2 = stop;
// start iterations
iters = 0;
done = false;
PH_PrintToMainLog(env, "\nStarting iterations...\n");
while (!done && iters < max_iters) {
iters++;
// PH_PrintToMainLog(env, "Iteration %d: ", iters);
// start3 = util_cpu_time();
sup_norm = 0.0;
// stuff for block storage
int b_n = hddm->blocks->n;
int b_nnz = hddm->blocks->nnz;
HDDNode **b_blocks = hddm->blocks->blocks;
unsigned int *b_rowscols = hddm->blocks->rowscols;
unsigned char *b_counts = hddm->blocks->counts;
int *b_starts = (int *)hddm->blocks->counts;
bool b_use_counts = hddm->blocks->use_counts;
int *b_offsets = hddm->blocks->offsets;
HDDNode **b_nodes = hddm->row_tables[hddm->l_b];
int b_dist_shift = hddm->blocks->dist_shift;
int b_dist_mask = hddm->blocks->dist_mask;
int row_offset, col_offset;
HDDNode *node;
// loop through rows of blocks
l = b_nnz; h = 0;
for(fb = 0; fb < b_n; fb++)
{
// loop actually over i (can do forwards or backwards psor/pgs)
i = (forwards) ? fb : b_n-1-fb;
// store block row offset
row_offset = b_offsets[i];
// initialise (partial) solution vector
h2 = b_offsets[i+1] - b_offsets[i];
// initialise vector
if (b == NULL) {
for (i2 = 0; i2 < h2; i2++) { soln2[i2] = 0.0; }
} else if (!compact_b) {
for (i2 = 0; i2 < h2; i2++) { soln2[i2] = b_vec[row_offset + i2]; }
} else {
for (i2 = 0; i2 < h2; i2++) { soln2[i2] = b_dist->dist[b_dist->ptrs[row_offset + i2]]; }
}
// loop through blocks in this row of blocks
if (!b_use_counts) { l = b_starts[i]; h = b_starts[i+1]; }
else if (forwards) { l = h; h += b_counts[i]; }
else { h = l; l -= b_counts[i]; }
for(j = l; j < h; j++)
{
// get node for block and its col offset
if (!compact_b) {
node = b_blocks[j];
col_offset = b_offsets[b_rowscols[j]];
} else {
node = b_nodes[(int)(b_rowscols[j] & b_dist_mask)];
col_offset = b_offsets[(int)(b_rowscols[j] >> b_dist_shift)];
}
// recursively traverse block
psor_rec(node, hddm->l_b, 0, col_offset, transpose);
}
// do convergence check/update/etc.
h2 = b_offsets[i+1] - b_offsets[i];
for (i2 = 0; i2 < h2; i2++) {
// divide by diagonal
if (!compact_d) {
soln2[i2] *= diags_vec[row_offset + i2];
} else {
soln2[i2] *= (diags_dist->dist[(int)diags_dist->ptrs[row_offset + i2]]);
}
// do over-relaxation if necessary
if (omega != 1) {
soln2[i2] = ((1-omega) * soln[row_offset + i2]) + (omega * soln2[i2]);
}
// compute norm for convergence
x = fabs(soln2[i2] - soln[row_offset + i2]);
if (term_crit == TERM_CRIT_RELATIVE) {
x /= soln2[i2];
}
if (x > sup_norm) sup_norm = x;
// set vector element
soln[row_offset + i2] = soln2[i2];
}
}
// check convergence
if (sup_norm < term_crit_param) {
done = true;
}
// PH_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters);
}
// stop clocks
stop = util_cpu_time();
time_for_iters = (double)(stop - start2)/1000;
time_taken = (double)(stop - start1)/1000;
// print iters/timing info
PH_PrintToMainLog(env, "\n%sPseudo %s: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", forwards?"":"Backwards ", (omega == 1.0)?"Gauss-Seidel":"SOR", iters, time_taken, time_for_iters/iters, time_for_setup);
// free memory
Cudd_RecursiveDeref(ddman, a);
Cudd_RecursiveDeref(ddman, id);
Cudd_RecursiveDeref(ddman, diags);
free_hdd_matrix(hddm);
if (compact_d) free_dist_vector(diags_dist); else free(diags_vec);
if (b != NULL) if (compact_b) free_dist_vector(b_dist); else free(b_vec);
free(soln2);
// if the iterative method didn't terminate, this is an error
if (!done) { delete soln; PH_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); return 0; }
return ptr_to_jlong(soln);
}
//------------------------------------------------------------------------------
static void psor_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose)
{
HDDNode *e, *t;
// if it's the zero node
if (hdd == zero) {
return;
}
// or if we've reached a submatrix
// (check for non-null ptr but, equivalently, we could just check if level==l_sm)
else if (hdd->sm.ptr) {
if (!compact_sm) {
psor_rm((RMSparseMatrix *)hdd->sm.ptr, row_offset, col_offset);
} else {
psor_cmsr((CMSRSparseMatrix *)hdd->sm.ptr, row_offset, col_offset);
}
return;
}
// or if we've reached the bottom
else if (level == num_levels) {
//printf("(%d,%d)=%f\n", row_offset, col_offset, hdd->type.val);
soln2[row_offset] -= soln[col_offset] * hdd->type.val;
return;
}
// otherwise recurse
e = hdd->type.kids.e;
if (e != zero) {
if (!transpose) {
psor_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose);
psor_rec(e->type.kids.t, level+1, row_offset, col_offset+e->off.val, transpose);
} else {
psor_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose);
psor_rec(e->type.kids.t, level+1, row_offset+e->off.val, col_offset, transpose);
}
}
t = hdd->type.kids.t;
if (t != zero) {
if (!transpose) {
psor_rec(t->type.kids.e, level+1, row_offset+hdd->off.val, col_offset, transpose);
psor_rec(t->type.kids.t, level+1, row_offset+hdd->off.val, col_offset+t->off.val, transpose);
} else {
psor_rec(t->type.kids.e, level+1, row_offset, col_offset+hdd->off.val, transpose);
psor_rec(t->type.kids.t, level+1, row_offset+t->off.val, col_offset+hdd->off.val, transpose);
}
}
}
//-----------------------------------------------------------------------------------
static void psor_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset)
{
int i2, j2, l2, h2;
int sm_n = rmsm->n;
int sm_nnz = rmsm->nnz;
double *sm_non_zeros = rmsm->non_zeros;
unsigned char *sm_row_counts = rmsm->row_counts;
int *sm_row_starts = (int *)rmsm->row_counts;
bool sm_use_counts = rmsm->use_counts;
unsigned int *sm_cols = rmsm->cols;
// loop through rows of submatrix
l2 = sm_nnz; h2 = 0;
for (i2 = 0; i2 < sm_n; i2++) {
// loop through entries in this row
if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; }
else { l2 = h2; h2 += sm_row_counts[i2]; }
for (j2 = l2; j2 < h2; j2++) {
soln2[row_offset + i2] -= soln[col_offset + sm_cols[j2]] * sm_non_zeros[j2];
//printf("(%d,%d)=%f\n", row_offset + i2, col_offset + sm_cols[j2], sm_non_zeros[j2]);
}
}
}
//-----------------------------------------------------------------------------------
static void psor_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset)
{
int i2, j2, l2, h2;
int sm_n = cmsrsm->n;
int sm_nnz = cmsrsm->nnz;
unsigned char *sm_row_counts = cmsrsm->row_counts;
int *sm_row_starts = (int *)cmsrsm->row_counts;
bool sm_use_counts = cmsrsm->use_counts;
unsigned int *sm_cols = cmsrsm->cols;
// loop through rows of submatrix
l2 = sm_nnz; h2 = 0;
for (i2 = 0; i2 < sm_n; i2++) {
// loop through entries in this row
if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; }
else { l2 = h2; h2 += sm_row_counts[i2]; }
for (j2 = l2; j2 < h2; j2++) {
soln2[row_offset + i2] -= soln[col_offset + (int)(sm_cols[j2] >> sm_dist_shift)] * sm_dist[(int)(sm_cols[j2] & sm_dist_mask)];
//printf("(%d,%d)=%f\n", row_offset + i2, col_offset + (int)(sm_cols[j2] >> sm_dist_shift), sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]);
}
}
}
//------------------------------------------------------------------------------