You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
455 lines
15 KiB
455 lines
15 KiB
//==============================================================================
|
|
//
|
|
// Copyright (c) 2002-
|
|
// Authors:
|
|
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
|
|
// * Rashid Mehmood <rxm@cs.bham.ac.uk> (University of Birmingham)
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// This file is part of PRISM.
|
|
//
|
|
// PRISM is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PRISM is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with PRISM; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
//==============================================================================
|
|
|
|
// includes
|
|
#include "PrismHybrid.h"
|
|
#include <math.h>
|
|
#include <util.h>
|
|
#include <cudd.h>
|
|
#include <dd.h>
|
|
#include <odd.h>
|
|
#include <dv.h>
|
|
#include "sparse.h"
|
|
#include "hybrid.h"
|
|
#include "PrismHybridGlob.h"
|
|
#include "jnipointer.h"
|
|
|
|
// local prototypes
|
|
static void psor_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose);
|
|
static void psor_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset);
|
|
static void psor_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset);
|
|
|
|
// globals (used by local functions)
|
|
static HDDNode *zero;
|
|
static int num_levels;
|
|
static bool compact_sm;
|
|
static double *sm_dist;
|
|
static int sm_dist_shift;
|
|
static int sm_dist_mask;
|
|
static double *soln, *soln2;
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// solve the linear equation system Ax=b with Pseudo Gauss-Seidel/SOR
|
|
|
|
JNIEXPORT jlong __pointer JNICALL Java_hybrid_PrismHybrid_PH_1PSOR
|
|
(
|
|
JNIEnv *env,
|
|
jclass cls,
|
|
jlong __pointer _odd, // odd
|
|
jlong __pointer rv, // row vars
|
|
jint num_rvars,
|
|
jlong __pointer cv, // col vars
|
|
jint num_cvars,
|
|
jlong __pointer _a, // matrix A
|
|
jlong __pointer _b, // vector b (if null, assume all zero)
|
|
jlong __pointer _init, // init soln
|
|
jboolean transpose, // transpose A? (i.e. solve xA=b not Ax=b?)
|
|
jboolean row_sums, // use row sums for diags instead? (strictly speaking: negative sum of non-diagonal row elements)
|
|
jdouble omega, // omega (over-relaxation parameter)
|
|
jboolean forwards // forwards or backwards?
|
|
)
|
|
{
|
|
// cast function parameters
|
|
ODDNode *odd = jlong_to_ODDNode(_odd); // odd
|
|
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
|
|
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
|
|
DdNode *a = jlong_to_DdNode(_a); // matrix A
|
|
DdNode *b = jlong_to_DdNode(_b); // vector b
|
|
DdNode *init = jlong_to_DdNode(_init); // init soln
|
|
|
|
// mtbdds
|
|
DdNode *reach, *diags, *id, *tmp;
|
|
// model stats
|
|
int n;
|
|
long nnz;
|
|
// flags
|
|
bool compact_d, compact_b;
|
|
// matrix mtbdd
|
|
HDDMatrix *hddm;
|
|
HDDNode *hdd;
|
|
// vectors
|
|
double *diags_vec, *b_vec;
|
|
DistVector *diags_dist, *b_dist;
|
|
// timing stuff
|
|
long start1, start2, start3, stop;
|
|
double time_taken, time_for_setup, time_for_iters;
|
|
// misc
|
|
int i, j, fb, l, h, i2, j2, fb2, l2, h2, iters;
|
|
double d, x, sup_norm, kb, kbt;
|
|
bool done;
|
|
|
|
// start clocks
|
|
start1 = start2 = util_cpu_time();
|
|
|
|
// get number of states
|
|
n = odd->eoff + odd->toff;
|
|
|
|
// get reachable states
|
|
reach = odd->dd;
|
|
|
|
// make local copy of a
|
|
Cudd_Ref(a);
|
|
|
|
// remove and keep diagonal entries of matrix A
|
|
id = DD_Identity(ddman, rvars, cvars, num_rvars);
|
|
Cudd_Ref(reach);
|
|
id = DD_And(ddman, id, reach);
|
|
Cudd_Ref(id);
|
|
Cudd_Ref(a);
|
|
diags = DD_Apply(ddman, APPLY_TIMES, id, a);
|
|
Cudd_Ref(id);
|
|
a = DD_ITE(ddman, id, DD_Constant(ddman, 0), a);
|
|
|
|
// build hdd for matrix
|
|
PH_PrintToMainLog(env, "\nBuilding hybrid MTBDD matrix... ");
|
|
hddm = build_hdd_matrix(a, rvars, cvars, num_rvars, odd, true, transpose);
|
|
hdd = hddm->top;
|
|
zero = hddm->zero;
|
|
num_levels = hddm->num_levels;
|
|
kb = hddm->mem_nodes;
|
|
kbt = kb;
|
|
PH_PrintToMainLog(env, "[levels=%d, nodes=%d] [%.1f KB]\n", hddm->num_levels, hddm->num_nodes, kb);
|
|
|
|
// split hdd matrix into blocks
|
|
// nb: in terms of memory, this gets precedence over sparse matrices
|
|
PH_PrintToMainLog(env, "Splitting into blocks... ");
|
|
split_hdd_matrix(hddm, compact, false, transpose);
|
|
compact_b = hddm->compact_b;
|
|
kb = hddm->mem_b;
|
|
kbt += kb;
|
|
PH_PrintToMainLog(env, "[levels=%d, n=%d, nnz=%d%s] [%.1f KB]\n", hddm->l_b, hddm->blocks->n, hddm->blocks->nnz, compact_b?", compact":"", kb);
|
|
|
|
// add sparse matrices
|
|
PH_PrintToMainLog(env, "Adding explicit sparse matrices... ");
|
|
add_sparse_matrices(hddm, compact, false, transpose);
|
|
compact_sm = hddm->compact_sm;
|
|
if (compact_sm) {
|
|
sm_dist = hddm->dist;
|
|
sm_dist_shift = hddm->dist_shift;
|
|
sm_dist_mask = hddm->dist_mask;
|
|
}
|
|
kb = hddm->mem_sm;
|
|
kbt += kb;
|
|
PH_PrintToMainLog(env, "[levels=%d, num=%d%s] [%.1f KB]\n", hddm->l_sm, hddm->num_sm, compact_sm?", compact":"", kb);
|
|
|
|
// get vector of diags, either by extracting from mtbdd or
|
|
// by doing (negative, non-diagonal) row sums of original A matrix (and then setting to 1 if sum is 0)
|
|
// (the latter is a fix for steady-state solution of a subsystem e.g. a BSCC)
|
|
PH_PrintToMainLog(env, "Creating vector for diagonals... ");
|
|
if (!row_sums) {
|
|
diags = DD_MaxAbstract(ddman, diags, cvars, num_cvars);
|
|
diags_vec = mtbdd_to_double_vector(ddman, diags, rvars, num_rvars, odd);
|
|
} else {
|
|
diags_vec = hdd_negative_row_sums(hddm, n, transpose);
|
|
}
|
|
// if any of the diagonals are zero, set them to one - avoids division by zero errors later
|
|
// strictly speaking, such matrices shouldn't work for this iterative method
|
|
// but they do occur, e.g. for steady-state computation of a bscc, this fixes it
|
|
for (i = 0; i < n; i++) diags_vec[i] = (diags_vec[i] == 0) ? 1.0 : diags_vec[i];
|
|
// try and convert to compact form if required
|
|
compact_d = false;
|
|
if (compact) {
|
|
if (diags_dist = double_vector_to_dist(diags_vec, n)) {
|
|
compact_d = true;
|
|
free(diags_vec);
|
|
}
|
|
}
|
|
kb = (!compact_d) ? n*8.0/1024.0 : (diags_dist->num_dist*8.0+n*2.0)/1024.0;
|
|
kbt += kb;
|
|
if (!compact_d) PH_PrintToMainLog(env, "[%.1f KB]\n", kb);
|
|
else PH_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", diags_dist->num_dist, kb);
|
|
|
|
// invert diagonal
|
|
if (!compact_d) {
|
|
for (i = 0; i < n; i++) diags_vec[i] = 1.0 / diags_vec[i];
|
|
} else {
|
|
for (i = 0; i < diags_dist->num_dist; i++) diags_dist->dist[i] = 1.0 / diags_dist->dist[i];
|
|
}
|
|
|
|
// build b vector (if present)
|
|
if (b != NULL) {
|
|
PH_PrintToMainLog(env, "Creating vector for RHS... ");
|
|
b_vec = mtbdd_to_double_vector(ddman, b, rvars, num_rvars, odd);
|
|
// try and convert to compact form if required
|
|
compact_b = false;
|
|
if (compact) {
|
|
if (b_dist = double_vector_to_dist(b_vec, n)) {
|
|
compact_b = true;
|
|
free(b_vec);
|
|
}
|
|
}
|
|
kb = (!compact_b) ? n*8.0/1024.0 : (b_dist->num_dist*8.0+n*2.0)/1024.0;
|
|
kbt += kb;
|
|
if (!compact_b) PH_PrintToMainLog(env, "[%.1f KB]\n", kb);
|
|
else PH_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", b_dist->num_dist, kb);
|
|
}
|
|
|
|
// create solution/iteration vectors
|
|
PH_PrintToMainLog(env, "Allocating iteration vectors... ");
|
|
soln = mtbdd_to_double_vector(ddman, init, rvars, num_rvars, odd);
|
|
soln2 = (double*)calloc(hddm->blocks->max, sizeof(double));
|
|
if (!soln2) fatal(" soln2 buffer allocation problem");
|
|
kb = (n*8.0/1024.0)+(hddm->blocks->max*8.0/1024.0);
|
|
kbt += kb;
|
|
PH_PrintToMainLog(env, "[%.1f + %.1f = %.1f KB]\n", (n*8.0/1024.0), (hddm->blocks->max*8.0/1024.0), kb);
|
|
|
|
// print total memory usage
|
|
PH_PrintToMainLog(env, "TOTAL: [%.1f KB]\n", kbt);
|
|
|
|
// get setup time
|
|
stop = util_cpu_time();
|
|
time_for_setup = (double)(stop - start2)/1000;
|
|
start2 = stop;
|
|
|
|
// start iterations
|
|
iters = 0;
|
|
done = false;
|
|
PH_PrintToMainLog(env, "\nStarting iterations...\n");
|
|
|
|
while (!done && iters < max_iters) {
|
|
|
|
iters++;
|
|
|
|
// PH_PrintToMainLog(env, "Iteration %d: ", iters);
|
|
// start3 = util_cpu_time();
|
|
|
|
sup_norm = 0.0;
|
|
|
|
// stuff for block storage
|
|
int b_n = hddm->blocks->n;
|
|
int b_nnz = hddm->blocks->nnz;
|
|
HDDNode **b_blocks = hddm->blocks->blocks;
|
|
unsigned int *b_rowscols = hddm->blocks->rowscols;
|
|
unsigned char *b_counts = hddm->blocks->counts;
|
|
int *b_starts = (int *)hddm->blocks->counts;
|
|
bool b_use_counts = hddm->blocks->use_counts;
|
|
int *b_offsets = hddm->blocks->offsets;
|
|
HDDNode **b_nodes = hddm->row_tables[hddm->l_b];
|
|
int b_dist_shift = hddm->blocks->dist_shift;
|
|
int b_dist_mask = hddm->blocks->dist_mask;
|
|
int row_offset, col_offset;
|
|
HDDNode *node;
|
|
|
|
// loop through rows of blocks
|
|
l = b_nnz; h = 0;
|
|
for(fb = 0; fb < b_n; fb++)
|
|
{
|
|
// loop actually over i (can do forwards or backwards psor/pgs)
|
|
i = (forwards) ? fb : b_n-1-fb;
|
|
|
|
// store block row offset
|
|
row_offset = b_offsets[i];
|
|
|
|
// initialise (partial) solution vector
|
|
h2 = b_offsets[i+1] - b_offsets[i];
|
|
// initialise vector
|
|
if (b == NULL) {
|
|
for (i2 = 0; i2 < h2; i2++) { soln2[i2] = 0.0; }
|
|
} else if (!compact_b) {
|
|
for (i2 = 0; i2 < h2; i2++) { soln2[i2] = b_vec[row_offset + i2]; }
|
|
} else {
|
|
for (i2 = 0; i2 < h2; i2++) { soln2[i2] = b_dist->dist[b_dist->ptrs[row_offset + i2]]; }
|
|
}
|
|
|
|
// loop through blocks in this row of blocks
|
|
if (!b_use_counts) { l = b_starts[i]; h = b_starts[i+1]; }
|
|
else if (forwards) { l = h; h += b_counts[i]; }
|
|
else { h = l; l -= b_counts[i]; }
|
|
for(j = l; j < h; j++)
|
|
{
|
|
// get node for block and its col offset
|
|
if (!compact_b) {
|
|
node = b_blocks[j];
|
|
col_offset = b_offsets[b_rowscols[j]];
|
|
} else {
|
|
node = b_nodes[(int)(b_rowscols[j] & b_dist_mask)];
|
|
col_offset = b_offsets[(int)(b_rowscols[j] >> b_dist_shift)];
|
|
}
|
|
|
|
// recursively traverse block
|
|
psor_rec(node, hddm->l_b, 0, col_offset, transpose);
|
|
}
|
|
|
|
// do convergence check/update/etc.
|
|
h2 = b_offsets[i+1] - b_offsets[i];
|
|
for (i2 = 0; i2 < h2; i2++) {
|
|
// divide by diagonal
|
|
if (!compact_d) {
|
|
soln2[i2] *= diags_vec[row_offset + i2];
|
|
} else {
|
|
soln2[i2] *= (diags_dist->dist[(int)diags_dist->ptrs[row_offset + i2]]);
|
|
}
|
|
// do over-relaxation if necessary
|
|
if (omega != 1) {
|
|
soln2[i2] = ((1-omega) * soln[row_offset + i2]) + (omega * soln2[i2]);
|
|
}
|
|
// compute norm for convergence
|
|
x = fabs(soln2[i2] - soln[row_offset + i2]);
|
|
if (term_crit == TERM_CRIT_RELATIVE) {
|
|
x /= soln2[i2];
|
|
}
|
|
if (x > sup_norm) sup_norm = x;
|
|
// set vector element
|
|
soln[row_offset + i2] = soln2[i2];
|
|
}
|
|
}
|
|
|
|
// check convergence
|
|
if (sup_norm < term_crit_param) {
|
|
done = true;
|
|
}
|
|
|
|
// PH_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters);
|
|
}
|
|
|
|
// stop clocks
|
|
stop = util_cpu_time();
|
|
time_for_iters = (double)(stop - start2)/1000;
|
|
time_taken = (double)(stop - start1)/1000;
|
|
|
|
// print iters/timing info
|
|
PH_PrintToMainLog(env, "\n%sPseudo %s: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", forwards?"":"Backwards ", (omega == 1.0)?"Gauss-Seidel":"SOR", iters, time_taken, time_for_iters/iters, time_for_setup);
|
|
|
|
// free memory
|
|
Cudd_RecursiveDeref(ddman, a);
|
|
Cudd_RecursiveDeref(ddman, id);
|
|
Cudd_RecursiveDeref(ddman, diags);
|
|
free_hdd_matrix(hddm);
|
|
if (compact_d) free_dist_vector(diags_dist); else free(diags_vec);
|
|
if (b != NULL) if (compact_b) free_dist_vector(b_dist); else free(b_vec);
|
|
free(soln2);
|
|
|
|
// if the iterative method didn't terminate, this is an error
|
|
if (!done) { delete soln; PH_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); return 0; }
|
|
|
|
return ptr_to_jlong(soln);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
static void psor_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose)
|
|
{
|
|
HDDNode *e, *t;
|
|
|
|
// if it's the zero node
|
|
if (hdd == zero) {
|
|
return;
|
|
}
|
|
// or if we've reached a submatrix
|
|
// (check for non-null ptr but, equivalently, we could just check if level==l_sm)
|
|
else if (hdd->sm.ptr) {
|
|
if (!compact_sm) {
|
|
psor_rm((RMSparseMatrix *)hdd->sm.ptr, row_offset, col_offset);
|
|
} else {
|
|
psor_cmsr((CMSRSparseMatrix *)hdd->sm.ptr, row_offset, col_offset);
|
|
}
|
|
return;
|
|
}
|
|
// or if we've reached the bottom
|
|
else if (level == num_levels) {
|
|
//printf("(%d,%d)=%f\n", row_offset, col_offset, hdd->type.val);
|
|
soln2[row_offset] -= soln[col_offset] * hdd->type.val;
|
|
return;
|
|
}
|
|
// otherwise recurse
|
|
e = hdd->type.kids.e;
|
|
if (e != zero) {
|
|
if (!transpose) {
|
|
psor_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose);
|
|
psor_rec(e->type.kids.t, level+1, row_offset, col_offset+e->off.val, transpose);
|
|
} else {
|
|
psor_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose);
|
|
psor_rec(e->type.kids.t, level+1, row_offset+e->off.val, col_offset, transpose);
|
|
}
|
|
}
|
|
t = hdd->type.kids.t;
|
|
if (t != zero) {
|
|
if (!transpose) {
|
|
psor_rec(t->type.kids.e, level+1, row_offset+hdd->off.val, col_offset, transpose);
|
|
psor_rec(t->type.kids.t, level+1, row_offset+hdd->off.val, col_offset+t->off.val, transpose);
|
|
} else {
|
|
psor_rec(t->type.kids.e, level+1, row_offset, col_offset+hdd->off.val, transpose);
|
|
psor_rec(t->type.kids.t, level+1, row_offset+t->off.val, col_offset+hdd->off.val, transpose);
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------------
|
|
|
|
static void psor_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset)
|
|
{
|
|
int i2, j2, l2, h2;
|
|
int sm_n = rmsm->n;
|
|
int sm_nnz = rmsm->nnz;
|
|
double *sm_non_zeros = rmsm->non_zeros;
|
|
unsigned char *sm_row_counts = rmsm->row_counts;
|
|
int *sm_row_starts = (int *)rmsm->row_counts;
|
|
bool sm_use_counts = rmsm->use_counts;
|
|
unsigned int *sm_cols = rmsm->cols;
|
|
|
|
// loop through rows of submatrix
|
|
l2 = sm_nnz; h2 = 0;
|
|
for (i2 = 0; i2 < sm_n; i2++) {
|
|
|
|
// loop through entries in this row
|
|
if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; }
|
|
else { l2 = h2; h2 += sm_row_counts[i2]; }
|
|
for (j2 = l2; j2 < h2; j2++) {
|
|
soln2[row_offset + i2] -= soln[col_offset + sm_cols[j2]] * sm_non_zeros[j2];
|
|
//printf("(%d,%d)=%f\n", row_offset + i2, col_offset + sm_cols[j2], sm_non_zeros[j2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------------
|
|
|
|
static void psor_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset)
|
|
{
|
|
int i2, j2, l2, h2;
|
|
int sm_n = cmsrsm->n;
|
|
int sm_nnz = cmsrsm->nnz;
|
|
unsigned char *sm_row_counts = cmsrsm->row_counts;
|
|
int *sm_row_starts = (int *)cmsrsm->row_counts;
|
|
bool sm_use_counts = cmsrsm->use_counts;
|
|
unsigned int *sm_cols = cmsrsm->cols;
|
|
|
|
// loop through rows of submatrix
|
|
l2 = sm_nnz; h2 = 0;
|
|
for (i2 = 0; i2 < sm_n; i2++) {
|
|
|
|
// loop through entries in this row
|
|
if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; }
|
|
else { l2 = h2; h2 += sm_row_counts[i2]; }
|
|
for (j2 = l2; j2 < h2; j2++) {
|
|
soln2[row_offset + i2] -= soln[col_offset + (int)(sm_cols[j2] >> sm_dist_shift)] * sm_dist[(int)(sm_cols[j2] & sm_dist_mask)];
|
|
//printf("(%d,%d)=%f\n", row_offset + i2, col_offset + (int)(sm_cols[j2] >> sm_dist_shift), sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|