//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford, formerly University of Birmingham) // * Rashid Mehmood (University of Birmingham) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== // includes #include "PrismHybrid.h" #include #include #include #include #include #include #include "sparse.h" #include "hybrid.h" #include "PrismHybridGlob.h" #include "jnipointer.h" // local prototypes static void psor_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose); static void psor_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset); static void psor_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset); // globals (used by local functions) static HDDNode *zero; static int num_levels; static bool compact_sm; static double *sm_dist; static int sm_dist_shift; static int sm_dist_mask; static double *soln, *soln2; //------------------------------------------------------------------------------ // solve the linear equation system Ax=b with Pseudo Gauss-Seidel/SOR JNIEXPORT jlong __pointer JNICALL Java_hybrid_PrismHybrid_PH_1PSOR ( JNIEnv *env, jclass cls, jlong __pointer _odd, // odd jlong __pointer rv, // row vars jint num_rvars, jlong __pointer cv, // col vars jint num_cvars, jlong __pointer _a, // matrix A jlong __pointer _b, // vector b (if null, assume all zero) jlong __pointer _init, // init soln jboolean transpose, // transpose A? (i.e. solve xA=b not Ax=b?) jboolean row_sums, // use row sums for diags instead? (strictly speaking: negative sum of non-diagonal row elements) jdouble omega, // omega (over-relaxation parameter) jboolean forwards // forwards or backwards? ) { // cast function parameters ODDNode *odd = jlong_to_ODDNode(_odd); // odd DdNode **rvars = jlong_to_DdNode_array(rv); // row vars DdNode **cvars = jlong_to_DdNode_array(cv); // col vars DdNode *a = jlong_to_DdNode(_a); // matrix A DdNode *b = jlong_to_DdNode(_b); // vector b DdNode *init = jlong_to_DdNode(_init); // init soln // mtbdds DdNode *reach, *diags, *id, *tmp; // model stats int n; long nnz; // flags bool compact_d, compact_b; // matrix mtbdd HDDMatrix *hddm; HDDNode *hdd; // vectors double *diags_vec, *b_vec; DistVector *diags_dist, *b_dist; // timing stuff long start1, start2, start3, stop; double time_taken, time_for_setup, time_for_iters; // misc int i, j, fb, l, h, i2, j2, fb2, l2, h2, iters; double d, x, sup_norm, kb, kbt; bool done; // start clocks start1 = start2 = util_cpu_time(); // get number of states n = odd->eoff + odd->toff; // get reachable states reach = odd->dd; // make local copy of a Cudd_Ref(a); // remove and keep diagonal entries of matrix A id = DD_Identity(ddman, rvars, cvars, num_rvars); Cudd_Ref(reach); id = DD_And(ddman, id, reach); Cudd_Ref(id); Cudd_Ref(a); diags = DD_Apply(ddman, APPLY_TIMES, id, a); Cudd_Ref(id); a = DD_ITE(ddman, id, DD_Constant(ddman, 0), a); // build hdd for matrix PH_PrintToMainLog(env, "\nBuilding hybrid MTBDD matrix... "); hddm = build_hdd_matrix(a, rvars, cvars, num_rvars, odd, true, transpose); hdd = hddm->top; zero = hddm->zero; num_levels = hddm->num_levels; kb = hddm->mem_nodes; kbt = kb; PH_PrintToMainLog(env, "[levels=%d, nodes=%d] [%.1f KB]\n", hddm->num_levels, hddm->num_nodes, kb); // split hdd matrix into blocks // nb: in terms of memory, this gets precedence over sparse matrices PH_PrintToMainLog(env, "Splitting into blocks... "); split_hdd_matrix(hddm, compact, false, transpose); compact_b = hddm->compact_b; kb = hddm->mem_b; kbt += kb; PH_PrintToMainLog(env, "[levels=%d, n=%d, nnz=%d%s] [%.1f KB]\n", hddm->l_b, hddm->blocks->n, hddm->blocks->nnz, compact_b?", compact":"", kb); // add sparse matrices PH_PrintToMainLog(env, "Adding explicit sparse matrices... "); add_sparse_matrices(hddm, compact, false, transpose); compact_sm = hddm->compact_sm; if (compact_sm) { sm_dist = hddm->dist; sm_dist_shift = hddm->dist_shift; sm_dist_mask = hddm->dist_mask; } kb = hddm->mem_sm; kbt += kb; PH_PrintToMainLog(env, "[levels=%d, num=%d%s] [%.1f KB]\n", hddm->l_sm, hddm->num_sm, compact_sm?", compact":"", kb); // get vector of diags, either by extracting from mtbdd or // by doing (negative, non-diagonal) row sums of original A matrix (and then setting to 1 if sum is 0) // (the latter is a fix for steady-state solution of a subsystem e.g. a BSCC) PH_PrintToMainLog(env, "Creating vector for diagonals... "); if (!row_sums) { diags = DD_MaxAbstract(ddman, diags, cvars, num_cvars); diags_vec = mtbdd_to_double_vector(ddman, diags, rvars, num_rvars, odd); } else { diags_vec = hdd_negative_row_sums(hddm, n, transpose); } // if any of the diagonals are zero, set them to one - avoids division by zero errors later // strictly speaking, such matrices shouldn't work for this iterative method // but they do occur, e.g. for steady-state computation of a bscc, this fixes it for (i = 0; i < n; i++) diags_vec[i] = (diags_vec[i] == 0) ? 1.0 : diags_vec[i]; // try and convert to compact form if required compact_d = false; if (compact) { if (diags_dist = double_vector_to_dist(diags_vec, n)) { compact_d = true; free(diags_vec); } } kb = (!compact_d) ? n*8.0/1024.0 : (diags_dist->num_dist*8.0+n*2.0)/1024.0; kbt += kb; if (!compact_d) PH_PrintToMainLog(env, "[%.1f KB]\n", kb); else PH_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", diags_dist->num_dist, kb); // invert diagonal if (!compact_d) { for (i = 0; i < n; i++) diags_vec[i] = 1.0 / diags_vec[i]; } else { for (i = 0; i < diags_dist->num_dist; i++) diags_dist->dist[i] = 1.0 / diags_dist->dist[i]; } // build b vector (if present) if (b != NULL) { PH_PrintToMainLog(env, "Creating vector for RHS... "); b_vec = mtbdd_to_double_vector(ddman, b, rvars, num_rvars, odd); // try and convert to compact form if required compact_b = false; if (compact) { if (b_dist = double_vector_to_dist(b_vec, n)) { compact_b = true; free(b_vec); } } kb = (!compact_b) ? n*8.0/1024.0 : (b_dist->num_dist*8.0+n*2.0)/1024.0; kbt += kb; if (!compact_b) PH_PrintToMainLog(env, "[%.1f KB]\n", kb); else PH_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", b_dist->num_dist, kb); } // create solution/iteration vectors PH_PrintToMainLog(env, "Allocating iteration vectors... "); soln = mtbdd_to_double_vector(ddman, init, rvars, num_rvars, odd); soln2 = (double*)calloc(hddm->blocks->max, sizeof(double)); if (!soln2) fatal(" soln2 buffer allocation problem"); kb = (n*8.0/1024.0)+(hddm->blocks->max*8.0/1024.0); kbt += kb; PH_PrintToMainLog(env, "[%.1f + %.1f = %.1f KB]\n", (n*8.0/1024.0), (hddm->blocks->max*8.0/1024.0), kb); // print total memory usage PH_PrintToMainLog(env, "TOTAL: [%.1f KB]\n", kbt); // get setup time stop = util_cpu_time(); time_for_setup = (double)(stop - start2)/1000; start2 = stop; // start iterations iters = 0; done = false; PH_PrintToMainLog(env, "\nStarting iterations...\n"); while (!done && iters < max_iters) { iters++; // PH_PrintToMainLog(env, "Iteration %d: ", iters); // start3 = util_cpu_time(); sup_norm = 0.0; // stuff for block storage int b_n = hddm->blocks->n; int b_nnz = hddm->blocks->nnz; HDDNode **b_blocks = hddm->blocks->blocks; unsigned int *b_rowscols = hddm->blocks->rowscols; unsigned char *b_counts = hddm->blocks->counts; int *b_starts = (int *)hddm->blocks->counts; bool b_use_counts = hddm->blocks->use_counts; int *b_offsets = hddm->blocks->offsets; HDDNode **b_nodes = hddm->row_tables[hddm->l_b]; int b_dist_shift = hddm->blocks->dist_shift; int b_dist_mask = hddm->blocks->dist_mask; int row_offset, col_offset; HDDNode *node; // loop through rows of blocks l = b_nnz; h = 0; for(fb = 0; fb < b_n; fb++) { // loop actually over i (can do forwards or backwards psor/pgs) i = (forwards) ? fb : b_n-1-fb; // store block row offset row_offset = b_offsets[i]; // initialise (partial) solution vector h2 = b_offsets[i+1] - b_offsets[i]; // initialise vector if (b == NULL) { for (i2 = 0; i2 < h2; i2++) { soln2[i2] = 0.0; } } else if (!compact_b) { for (i2 = 0; i2 < h2; i2++) { soln2[i2] = b_vec[row_offset + i2]; } } else { for (i2 = 0; i2 < h2; i2++) { soln2[i2] = b_dist->dist[b_dist->ptrs[row_offset + i2]]; } } // loop through blocks in this row of blocks if (!b_use_counts) { l = b_starts[i]; h = b_starts[i+1]; } else if (forwards) { l = h; h += b_counts[i]; } else { h = l; l -= b_counts[i]; } for(j = l; j < h; j++) { // get node for block and its col offset if (!compact_b) { node = b_blocks[j]; col_offset = b_offsets[b_rowscols[j]]; } else { node = b_nodes[(int)(b_rowscols[j] & b_dist_mask)]; col_offset = b_offsets[(int)(b_rowscols[j] >> b_dist_shift)]; } // recursively traverse block psor_rec(node, hddm->l_b, 0, col_offset, transpose); } // do convergence check/update/etc. h2 = b_offsets[i+1] - b_offsets[i]; for (i2 = 0; i2 < h2; i2++) { // divide by diagonal if (!compact_d) { soln2[i2] *= diags_vec[row_offset + i2]; } else { soln2[i2] *= (diags_dist->dist[(int)diags_dist->ptrs[row_offset + i2]]); } // do over-relaxation if necessary if (omega != 1) { soln2[i2] = ((1-omega) * soln[row_offset + i2]) + (omega * soln2[i2]); } // compute norm for convergence x = fabs(soln2[i2] - soln[row_offset + i2]); if (term_crit == TERM_CRIT_RELATIVE) { x /= soln2[i2]; } if (x > sup_norm) sup_norm = x; // set vector element soln[row_offset + i2] = soln2[i2]; } } // check convergence if (sup_norm < term_crit_param) { done = true; } // PH_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters); } // stop clocks stop = util_cpu_time(); time_for_iters = (double)(stop - start2)/1000; time_taken = (double)(stop - start1)/1000; // print iters/timing info PH_PrintToMainLog(env, "\n%sPseudo %s: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", forwards?"":"Backwards ", (omega == 1.0)?"Gauss-Seidel":"SOR", iters, time_taken, time_for_iters/iters, time_for_setup); // free memory Cudd_RecursiveDeref(ddman, a); Cudd_RecursiveDeref(ddman, id); Cudd_RecursiveDeref(ddman, diags); free_hdd_matrix(hddm); if (compact_d) free_dist_vector(diags_dist); else free(diags_vec); if (b != NULL) if (compact_b) free_dist_vector(b_dist); else free(b_vec); free(soln2); // if the iterative method didn't terminate, this is an error if (!done) { delete soln; PH_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); return 0; } return ptr_to_jlong(soln); } //------------------------------------------------------------------------------ static void psor_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose) { HDDNode *e, *t; // if it's the zero node if (hdd == zero) { return; } // or if we've reached a submatrix // (check for non-null ptr but, equivalently, we could just check if level==l_sm) else if (hdd->sm.ptr) { if (!compact_sm) { psor_rm((RMSparseMatrix *)hdd->sm.ptr, row_offset, col_offset); } else { psor_cmsr((CMSRSparseMatrix *)hdd->sm.ptr, row_offset, col_offset); } return; } // or if we've reached the bottom else if (level == num_levels) { //printf("(%d,%d)=%f\n", row_offset, col_offset, hdd->type.val); soln2[row_offset] -= soln[col_offset] * hdd->type.val; return; } // otherwise recurse e = hdd->type.kids.e; if (e != zero) { if (!transpose) { psor_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose); psor_rec(e->type.kids.t, level+1, row_offset, col_offset+e->off.val, transpose); } else { psor_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose); psor_rec(e->type.kids.t, level+1, row_offset+e->off.val, col_offset, transpose); } } t = hdd->type.kids.t; if (t != zero) { if (!transpose) { psor_rec(t->type.kids.e, level+1, row_offset+hdd->off.val, col_offset, transpose); psor_rec(t->type.kids.t, level+1, row_offset+hdd->off.val, col_offset+t->off.val, transpose); } else { psor_rec(t->type.kids.e, level+1, row_offset, col_offset+hdd->off.val, transpose); psor_rec(t->type.kids.t, level+1, row_offset+t->off.val, col_offset+hdd->off.val, transpose); } } } //----------------------------------------------------------------------------------- static void psor_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset) { int i2, j2, l2, h2; int sm_n = rmsm->n; int sm_nnz = rmsm->nnz; double *sm_non_zeros = rmsm->non_zeros; unsigned char *sm_row_counts = rmsm->row_counts; int *sm_row_starts = (int *)rmsm->row_counts; bool sm_use_counts = rmsm->use_counts; unsigned int *sm_cols = rmsm->cols; // loop through rows of submatrix l2 = sm_nnz; h2 = 0; for (i2 = 0; i2 < sm_n; i2++) { // loop through entries in this row if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; } else { l2 = h2; h2 += sm_row_counts[i2]; } for (j2 = l2; j2 < h2; j2++) { soln2[row_offset + i2] -= soln[col_offset + sm_cols[j2]] * sm_non_zeros[j2]; //printf("(%d,%d)=%f\n", row_offset + i2, col_offset + sm_cols[j2], sm_non_zeros[j2]); } } } //----------------------------------------------------------------------------------- static void psor_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset) { int i2, j2, l2, h2; int sm_n = cmsrsm->n; int sm_nnz = cmsrsm->nnz; unsigned char *sm_row_counts = cmsrsm->row_counts; int *sm_row_starts = (int *)cmsrsm->row_counts; bool sm_use_counts = cmsrsm->use_counts; unsigned int *sm_cols = cmsrsm->cols; // loop through rows of submatrix l2 = sm_nnz; h2 = 0; for (i2 = 0; i2 < sm_n; i2++) { // loop through entries in this row if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; } else { l2 = h2; h2 += sm_row_counts[i2]; } for (j2 = l2; j2 < h2; j2++) { soln2[row_offset + i2] -= soln[col_offset + (int)(sm_cols[j2] >> sm_dist_shift)] * sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]; //printf("(%d,%d)=%f\n", row_offset + i2, col_offset + (int)(sm_cols[j2] >> sm_dist_shift), sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]); } } } //------------------------------------------------------------------------------