You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

45 lines
1.9 KiB

// properties from [HHK00]
// left_operational_i : left_n>=i & Toleft_n
// right_operational_i : right_n>=i & Toright_n
// operational_i : (left_n+right_n)>=i & Toleft_n & line_n & Toright_n
// minimum_k : left_operational_k | right_operational_k | operational_k
// premium = minimum_N
label "minimum" = (left_n>=k & Toleft_n) | (right_n>=k & Toright_n) | ((left_n+right_n)>=k & Toleft_n & line_n & Toright_n);
label "premium" = (left_n>=left_mx & Toleft_n) | (right_n>=right_mx & Toright_n) | ((left_n+right_n)>=left_mx & Toleft_n & line_n & Toright_n);
const double T;
// in the long run, the probability that premium QOS will be delivered
S=? [ "premium" ]
// in the long run, the chance that QOS is below minimum
S=? [ !"minimum" ]
// the system will always be able to offer premium QOS at some point in the future
P>=1 [ true U "premium" ]
// the chance that QOS drops below minimum quality within T time units (from the initial state)
P=? [ true U<=T !"minimum" ]
// if facing insufficient QOS, the maximum probability of facing the same problem after T time units
P=? [ true U[T,T] !"minimum" {!"minimum"}{max} ]
// the minimum probability of going from minimum QOS to premium QOS within T time units
P=? [ true U<=T "premium" {"minimum"}{min} ]
// the minimum probability of going from minimum QOS to premium QOS within T time units without violating the minimum QOS constraint along the way
P=? [ "minimum" U<=T "premium" {"minimum"}{min} ]
// the maximum probability that it takes more than T time units to recover from insufficient QOS
P=? [ !"minimum" U>=T "minimum" {!"minimum"}{max} ]
// percentage of operational workstations at time T starting from below minimum QOS
R{"per_oper"}=? [ I=T {!"minimum"}{min} ]
// from the inital state the expected time that the system is below minimum QOS until time T
R{"below_min"}=? [ C<=T ]
// from the inital state the expected number of repairs by time T
R{"repairs"}=? [ C<=T ]