// properties from [HHK00] // left_operational_i : left_n>=i & Toleft_n // right_operational_i : right_n>=i & Toright_n // operational_i : (left_n+right_n)>=i & Toleft_n & line_n & Toright_n // minimum_k : left_operational_k | right_operational_k | operational_k // premium = minimum_N label "minimum" = (left_n>=k & Toleft_n) | (right_n>=k & Toright_n) | ((left_n+right_n)>=k & Toleft_n & line_n & Toright_n); label "premium" = (left_n>=left_mx & Toleft_n) | (right_n>=right_mx & Toright_n) | ((left_n+right_n)>=left_mx & Toleft_n & line_n & Toright_n); const double T; // in the long run, the probability that premium QOS will be delivered S=? [ "premium" ] // in the long run, the chance that QOS is below minimum S=? [ !"minimum" ] // the system will always be able to offer premium QOS at some point in the future P>=1 [ true U "premium" ] // the chance that QOS drops below minimum quality within T time units (from the initial state) P=? [ true U<=T !"minimum" ] // if facing insufficient QOS, the maximum probability of facing the same problem after T time units P=? [ true U[T,T] !"minimum" {!"minimum"}{max} ] // the minimum probability of going from minimum QOS to premium QOS within T time units P=? [ true U<=T "premium" {"minimum"}{min} ] // the minimum probability of going from minimum QOS to premium QOS within T time units without violating the minimum QOS constraint along the way P=? [ "minimum" U<=T "premium" {"minimum"}{min} ] // the maximum probability that it takes more than T time units to recover from insufficient QOS P=? [ !"minimum" U>=T "minimum" {!"minimum"}{max} ] // percentage of operational workstations at time T starting from below minimum QOS R{"per_oper"}=? [ I=T {!"minimum"}{min} ] // from the inital state the expected time that the system is below minimum QOS until time T R{"below_min"}=? [ C<=T ] // from the inital state the expected number of repairs by time T R{"repairs"}=? [ C<=T ]