|
|
@ -5,10 +5,12 @@ |
|
|
// operational_i : (left_n+right_n)>=i & Toleft_n & line_n & Toright_n |
|
|
// operational_i : (left_n+right_n)>=i & Toleft_n & line_n & Toright_n |
|
|
// minimum_k : left_operational_k | right_operational_k | operational_k |
|
|
// minimum_k : left_operational_k | right_operational_k | operational_k |
|
|
// premium = minimum_N |
|
|
// premium = minimum_N |
|
|
const double T; |
|
|
|
|
|
|
|
|
|
|
|
label "minimum" = (left_n>=k & Toleft_n) | (right_n>=k & Toright_n) | ((left_n+right_n)>=k & Toleft_n & line_n & Toright_n); |
|
|
label "minimum" = (left_n>=k & Toleft_n) | (right_n>=k & Toright_n) | ((left_n+right_n)>=k & Toleft_n & line_n & Toright_n); |
|
|
label "premium" = (left_n>=left_mx & Toleft_n) | (right_n>=right_mx & Toright_n) | ((left_n+right_n)>=left_mx & Toleft_n & line_n & Toright_n); |
|
|
label "premium" = (left_n>=left_mx & Toleft_n) | (right_n>=right_mx & Toright_n) | ((left_n+right_n)>=left_mx & Toleft_n & line_n & Toright_n); |
|
|
|
|
|
|
|
|
|
|
|
const double T; |
|
|
|
|
|
|
|
|
// in the long run, the probability that premium QOS will be delivered |
|
|
// in the long run, the probability that premium QOS will be delivered |
|
|
S=? [ "premium" ] |
|
|
S=? [ "premium" ] |
|
|
|
|
|
|
|
|
@ -34,14 +36,10 @@ P=? [ "minimum" U<=T "premium" {"minimum"}{min}] |
|
|
P=? [ !"minimum" U>=T "minimum" {!"minimum"}{max} ] |
|
|
P=? [ !"minimum" U>=T "minimum" {!"minimum"}{max} ] |
|
|
|
|
|
|
|
|
// percentage of operational workstations at time T starting from below minimum QOS |
|
|
// percentage of operational workstations at time T starting from below minimum QOS |
|
|
// (set OPERATIONAL to true, MINIMUM to 0 and REPAIR to false) |
|
|
|
|
|
R=?[I=T {!"minimum"}{min}] |
|
|
|
|
|
|
|
|
R{"per_oper"}=? [ I=T {!"minimum"}{min} ] |
|
|
|
|
|
|
|
|
// from the inital state the expected time that the system is below minimum QOS until time T |
|
|
// from the inital state the expected time that the system is below minimum QOS until time T |
|
|
// (set OPERATIONAL to false, MINIMUM to 1 and REPAIR to false) |
|
|
|
|
|
R=?[C<=T ] |
|
|
|
|
|
|
|
|
R{"below_min"}=? [ C<=T ] |
|
|
|
|
|
|
|
|
// from the inital state the expected number of repairs by time T |
|
|
// from the inital state the expected number of repairs by time T |
|
|
// (set OPERATIONAL to false, MINIMUM to 0 and REPAIR to true) |
|
|
|
|
|
R=?[C<=T ] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R{"repairs"}=? [ C<=T ] |