|
|
|
@ -172,7 +172,7 @@ public interface MDP extends Model |
|
|
|
|
|
|
|
/** |
|
|
|
* Do a Gauss-Seidel-style matrix-vector multiplication followed by min/max. |
|
|
|
* i.e. for all s: vect[s] = min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } |
|
|
|
* i.e. for all s: vect[s] = min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } |
|
|
|
* and store new values directly in {@code vect} as computed. |
|
|
|
* The maximum (absolute/relative) difference between old/new |
|
|
|
* elements of {@code vect} is also returned. |
|
|
|
@ -189,7 +189,7 @@ public interface MDP extends Model |
|
|
|
|
|
|
|
/** |
|
|
|
* Do a single row of Jacobi-style matrix-vector multiplication followed by min/max. |
|
|
|
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } |
|
|
|
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } |
|
|
|
* Optionally, store optimal (memoryless) strategy info. |
|
|
|
* @param s Row index |
|
|
|
* @param vect Vector to multiply by |
|
|
|
@ -200,7 +200,7 @@ public interface MDP extends Model |
|
|
|
|
|
|
|
/** |
|
|
|
* Do a single row of Jacobi-style matrix-vector multiplication for a specific choice. |
|
|
|
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } |
|
|
|
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } |
|
|
|
* @param s Row index |
|
|
|
* @param k Choice index |
|
|
|
* @param vect Vector to multiply by |
|
|
|
@ -223,7 +223,7 @@ public interface MDP extends Model |
|
|
|
|
|
|
|
/** |
|
|
|
* Do a Gauss-Seidel-style matrix-vector multiplication and sum of action reward followed by min/max. |
|
|
|
* i.e. for all s: vect[s] = min/max_k { rew(s) + (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } |
|
|
|
* i.e. for all s: vect[s] = min/max_k { rew(s) + (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } |
|
|
|
* and store new values directly in {@code vect} as computed. |
|
|
|
* The maximum (absolute/relative) difference between old/new |
|
|
|
* elements of {@code vect} is also returned. |
|
|
|
@ -253,7 +253,7 @@ public interface MDP extends Model |
|
|
|
|
|
|
|
/** |
|
|
|
* Do a single row of Jacobi-style matrix-vector multiplication and sum of action reward followed by min/max. |
|
|
|
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } |
|
|
|
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } |
|
|
|
* Optionally, store optimal (memoryless) strategy info. |
|
|
|
* @param s Row index |
|
|
|
* @param vect Vector to multiply by |
|
|
|
|