diff --git a/prism/src/explicit/MDP.java b/prism/src/explicit/MDP.java index 68574287..8aa1bb95 100644 --- a/prism/src/explicit/MDP.java +++ b/prism/src/explicit/MDP.java @@ -172,7 +172,7 @@ public interface MDP extends Model /** * Do a Gauss-Seidel-style matrix-vector multiplication followed by min/max. - * i.e. for all s: vect[s] = min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } + * i.e. for all s: vect[s] = min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } * and store new values directly in {@code vect} as computed. * The maximum (absolute/relative) difference between old/new * elements of {@code vect} is also returned. @@ -189,7 +189,7 @@ public interface MDP extends Model /** * Do a single row of Jacobi-style matrix-vector multiplication followed by min/max. - * i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } + * i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } * Optionally, store optimal (memoryless) strategy info. * @param s Row index * @param vect Vector to multiply by @@ -200,7 +200,7 @@ public interface MDP extends Model /** * Do a single row of Jacobi-style matrix-vector multiplication for a specific choice. - * i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } + * i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } * @param s Row index * @param k Choice index * @param vect Vector to multiply by @@ -223,7 +223,7 @@ public interface MDP extends Model /** * Do a Gauss-Seidel-style matrix-vector multiplication and sum of action reward followed by min/max. - * i.e. for all s: vect[s] = min/max_k { rew(s) + (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } + * i.e. for all s: vect[s] = min/max_k { rew(s) + (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } * and store new values directly in {@code vect} as computed. * The maximum (absolute/relative) difference between old/new * elements of {@code vect} is also returned. @@ -253,7 +253,7 @@ public interface MDP extends Model /** * Do a single row of Jacobi-style matrix-vector multiplication and sum of action reward followed by min/max. - * i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / P_k(s,s) } + * i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) } * Optionally, store optimal (memoryless) strategy info. * @param s Row index * @param vect Vector to multiply by