|
|
|
@ -53,6 +53,7 @@ import acceptance.AcceptanceReach; |
|
|
|
import acceptance.AcceptanceType; |
|
|
|
import automata.DA; |
|
|
|
import automata.LTL2WDBA; |
|
|
|
import common.IntSet; |
|
|
|
import common.IterableBitSet; |
|
|
|
import explicit.modelviews.EquivalenceRelationInteger; |
|
|
|
import explicit.modelviews.MDPEquiv; |
|
|
|
@ -525,12 +526,13 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
{ |
|
|
|
ModelCheckerResult res = null; |
|
|
|
|
|
|
|
IterationMethod iterationMethod = null; |
|
|
|
switch (method) { |
|
|
|
case VALUE_ITERATION: |
|
|
|
res = computeReachProbsValIter(mdp, no, yes, min, init, known, strat); |
|
|
|
iterationMethod = new IterationMethodPower(termCrit == TermCrit.ABSOLUTE, termCritParam); |
|
|
|
break; |
|
|
|
case GAUSS_SEIDEL: |
|
|
|
res = computeReachProbsGaussSeidel(mdp, no, yes, min, init, known, strat); |
|
|
|
iterationMethod = new IterationMethodGS(termCrit == TermCrit.ABSOLUTE, termCritParam, false); |
|
|
|
break; |
|
|
|
case POLICY_ITERATION: |
|
|
|
res = computeReachProbsPolIter(mdp, no, yes, min, strat); |
|
|
|
@ -542,6 +544,10 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
throw new PrismException("Unknown MDP solution method " + mdpSolnMethod.fullName()); |
|
|
|
} |
|
|
|
|
|
|
|
if (res == null) { // not yet computed, use iterationMethod |
|
|
|
res = doValueIterationReachProbs(mdp, no, yes, min, init, known, iterationMethod, false, strat); |
|
|
|
} |
|
|
|
|
|
|
|
return res; |
|
|
|
} |
|
|
|
|
|
|
|
@ -751,29 +757,48 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
protected ModelCheckerResult computeReachProbsValIter(MDP mdp, BitSet no, BitSet yes, boolean min, double init[], BitSet known, int strat[]) |
|
|
|
throws PrismException |
|
|
|
{ |
|
|
|
ModelCheckerResult res; |
|
|
|
IterationMethodPower iterationMethod = new IterationMethodPower(termCrit == TermCrit.ABSOLUTE, termCritParam); |
|
|
|
return doValueIterationReachProbs(mdp, no, yes, min, init, known, iterationMethod, false, strat); |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Compute reachability probabilities using value iteration. |
|
|
|
* Optionally, store optimal (memoryless) strategy info. |
|
|
|
* @param mdp The MDP |
|
|
|
* @param no Probability 0 states |
|
|
|
* @param yes Probability 1 states |
|
|
|
* @param min Min or max probabilities (true=min, false=max) |
|
|
|
* @param init Optionally, an initial solution vector (will be overwritten) |
|
|
|
* @param known Optionally, a set of states for which the exact answer is known |
|
|
|
* @param iterationMethod The iteration method |
|
|
|
* @param topological Do topological value iteration? |
|
|
|
* @param strat Storage for (memoryless) strategy choice indices (ignored if null) |
|
|
|
* Note: if 'known' is specified (i.e. is non-null), 'init' must also be given and is used for the exact values. |
|
|
|
*/ |
|
|
|
protected ModelCheckerResult doValueIterationReachProbs(MDP mdp, BitSet no, BitSet yes, boolean min, double init[], BitSet known, IterationMethod iterationMethod, boolean topological, int strat[]) |
|
|
|
throws PrismException |
|
|
|
{ |
|
|
|
BitSet unknown; |
|
|
|
int i, n, iters; |
|
|
|
double soln[], soln2[], tmpsoln[], initVal; |
|
|
|
boolean done; |
|
|
|
int i, n; |
|
|
|
double initVal; |
|
|
|
long timer; |
|
|
|
|
|
|
|
// Start value iteration |
|
|
|
timer = System.currentTimeMillis(); |
|
|
|
mainLog.println("Starting value iteration (" + (min ? "min" : "max") + ")..."); |
|
|
|
String description = (min ? "min" : "max") |
|
|
|
+ (topological ? ", topological": "" ) |
|
|
|
+ ", with " + iterationMethod.getDescriptionShort(); |
|
|
|
|
|
|
|
mainLog.println("Starting value iteration (" + description + ")..."); |
|
|
|
|
|
|
|
ExportIterations iterationsExport = null; |
|
|
|
if (settings.getBoolean(PrismSettings.PRISM_EXPORT_ITERATIONS)) { |
|
|
|
iterationsExport = new ExportIterations("Explicit ReachRewards value iteration"); |
|
|
|
iterationsExport = new ExportIterations("Explicit MDP ReachProbs value iteration (" + description + ")"); |
|
|
|
} |
|
|
|
|
|
|
|
// Store num states |
|
|
|
n = mdp.getNumStates(); |
|
|
|
|
|
|
|
// Create solution vector(s) |
|
|
|
soln = new double[n]; |
|
|
|
soln2 = (init == null) ? new double[n] : init; |
|
|
|
|
|
|
|
// Initialise solution vectors. Use (where available) the following in order of preference: |
|
|
|
// (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal |
|
|
|
// where initVal is 0.0 or 1.0, depending on whether we converge from below/above. |
|
|
|
@ -781,14 +806,15 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
if (init != null) { |
|
|
|
if (known != null) { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; |
|
|
|
init[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; |
|
|
|
} else { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; |
|
|
|
init[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; |
|
|
|
} |
|
|
|
} else { |
|
|
|
init = new double[n]; |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; |
|
|
|
init[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; |
|
|
|
} |
|
|
|
|
|
|
|
// Determine set of states actually need to compute values for |
|
|
|
@ -800,48 +826,28 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
unknown.andNot(known); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.exportVector(soln, 0); |
|
|
|
|
|
|
|
// Start iterations |
|
|
|
iters = 0; |
|
|
|
done = false; |
|
|
|
while (!done && iters < maxIters) { |
|
|
|
iters++; |
|
|
|
// Matrix-vector multiply and min/max ops |
|
|
|
mdp.mvMultMinMax(soln, min, soln2, unknown, false, strat); |
|
|
|
iterationsExport.exportVector(init, 0); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.exportVector(soln2, 0); |
|
|
|
IterationMethod.IterationValIter iteration = iterationMethod.forMvMultMinMax(mdp, min, strat); |
|
|
|
iteration.init(init); |
|
|
|
|
|
|
|
// Check termination |
|
|
|
done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); |
|
|
|
// Swap vectors for next iter |
|
|
|
tmpsoln = soln; |
|
|
|
soln = soln2; |
|
|
|
soln2 = tmpsoln; |
|
|
|
} |
|
|
|
IntSet unknownStates = IntSet.asIntSet(unknown); |
|
|
|
|
|
|
|
// Finished value iteration |
|
|
|
timer = System.currentTimeMillis() - timer; |
|
|
|
mainLog.print("Value iteration (" + (min ? "min" : "max") + ")"); |
|
|
|
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); |
|
|
|
if (topological) { |
|
|
|
// Compute SCCInfo, including trivial SCCs in the subgraph obtained when only considering |
|
|
|
// states in unknown |
|
|
|
SCCInfo sccs = SCCComputer.computeTopologicalOrdering(this, mdp, true, unknown::get); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.close(); |
|
|
|
IterationMethod.SingletonSCCSolver singletonSCCSolver = (int s, double[] soln) -> { |
|
|
|
soln[s] = mdp.mvMultJacMinMaxSingle(s, soln, min, strat); |
|
|
|
}; |
|
|
|
|
|
|
|
// Non-convergence is an error (usually) |
|
|
|
if (!done && errorOnNonConverge) { |
|
|
|
String msg = "Iterative method did not converge within " + iters + " iterations."; |
|
|
|
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; |
|
|
|
throw new PrismException(msg); |
|
|
|
// run the actual value iteration |
|
|
|
return iterationMethod.doTopologicalValueIteration(this, description, sccs, iteration, singletonSCCSolver, timer, iterationsExport); |
|
|
|
} else { |
|
|
|
// run the actual value iteration |
|
|
|
return iterationMethod.doValueIteration(this, description, iteration, unknownStates, timer, iterationsExport); |
|
|
|
} |
|
|
|
|
|
|
|
// Return results |
|
|
|
res = new ModelCheckerResult(); |
|
|
|
res.soln = soln; |
|
|
|
res.numIters = iters; |
|
|
|
res.timeTaken = timer / 1000.0; |
|
|
|
return res; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
@ -858,92 +864,8 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
protected ModelCheckerResult computeReachProbsGaussSeidel(MDP mdp, BitSet no, BitSet yes, boolean min, double init[], BitSet known, int strat[]) |
|
|
|
throws PrismException |
|
|
|
{ |
|
|
|
ModelCheckerResult res; |
|
|
|
BitSet unknown; |
|
|
|
int i, n, iters; |
|
|
|
double soln[], initVal, maxDiff; |
|
|
|
boolean done; |
|
|
|
long timer; |
|
|
|
|
|
|
|
// Start value iteration |
|
|
|
timer = System.currentTimeMillis(); |
|
|
|
mainLog.println("Starting Gauss-Seidel (" + (min ? "min" : "max") + ")..."); |
|
|
|
|
|
|
|
ExportIterations iterationsExport = null; |
|
|
|
if (settings.getBoolean(PrismSettings.PRISM_EXPORT_ITERATIONS)) { |
|
|
|
iterationsExport = new ExportIterations("Explicit MDP ReachProbs Gauss-Seidel iteration"); |
|
|
|
} |
|
|
|
|
|
|
|
// Store num states |
|
|
|
n = mdp.getNumStates(); |
|
|
|
|
|
|
|
// Create solution vector |
|
|
|
soln = (init == null) ? new double[n] : init; |
|
|
|
|
|
|
|
// Initialise solution vector. Use (where available) the following in order of preference: |
|
|
|
// (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal |
|
|
|
// where initVal is 0.0 or 1.0, depending on whether we converge from below/above. |
|
|
|
initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0; |
|
|
|
if (init != null) { |
|
|
|
if (known != null) { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; |
|
|
|
} else { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; |
|
|
|
} |
|
|
|
} else { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; |
|
|
|
} |
|
|
|
|
|
|
|
// Determine set of states actually need to compute values for |
|
|
|
unknown = new BitSet(); |
|
|
|
unknown.set(0, n); |
|
|
|
unknown.andNot(yes); |
|
|
|
unknown.andNot(no); |
|
|
|
if (known != null) |
|
|
|
unknown.andNot(known); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.exportVector(soln, 0); |
|
|
|
|
|
|
|
// Start iterations |
|
|
|
iters = 0; |
|
|
|
done = false; |
|
|
|
while (!done && iters < maxIters) { |
|
|
|
iters++; |
|
|
|
// Matrix-vector multiply |
|
|
|
maxDiff = mdp.mvMultGSMinMax(soln, min, unknown, false, termCrit == TermCrit.ABSOLUTE, strat); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.exportVector(soln, 0); |
|
|
|
|
|
|
|
// Check termination |
|
|
|
done = maxDiff < termCritParam; |
|
|
|
} |
|
|
|
|
|
|
|
// Finished Gauss-Seidel |
|
|
|
timer = System.currentTimeMillis() - timer; |
|
|
|
mainLog.print("Gauss-Seidel"); |
|
|
|
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.close(); |
|
|
|
|
|
|
|
// Non-convergence is an error (usually) |
|
|
|
if (!done && errorOnNonConverge) { |
|
|
|
String msg = "Iterative method did not converge within " + iters + " iterations."; |
|
|
|
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; |
|
|
|
throw new PrismException(msg); |
|
|
|
} |
|
|
|
|
|
|
|
// Return results |
|
|
|
res = new ModelCheckerResult(); |
|
|
|
res.soln = soln; |
|
|
|
res.numIters = iters; |
|
|
|
res.timeTaken = timer / 1000.0; |
|
|
|
return res; |
|
|
|
IterationMethodGS iterationMethod = new IterationMethodGS(termCrit == TermCrit.ABSOLUTE, termCritParam, false); |
|
|
|
return doValueIterationReachProbs(mdp, no, yes, min, init, known, iterationMethod, false, strat); |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
@ -1628,20 +1550,7 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Compute rewards |
|
|
|
switch (mdpSolnMethod) { |
|
|
|
case VALUE_ITERATION: |
|
|
|
res = computeReachRewardsValIter(mdp, mdpRewards, target, inf, min, init, known, strat); |
|
|
|
break; |
|
|
|
case GAUSS_SEIDEL: |
|
|
|
res = computeReachRewardsGaussSeidel(mdp, mdpRewards, target, inf, min, init, known, strat); |
|
|
|
break; |
|
|
|
case POLICY_ITERATION: |
|
|
|
res = computeReachRewardsPolIter(mdp, mdpRewards, target, inf, min, strat); |
|
|
|
break; |
|
|
|
default: |
|
|
|
throw new PrismException("Unknown MDP solution method " + mdpSolnMethod.fullName()); |
|
|
|
} |
|
|
|
res = computeReachRewardsNumeric(mdp, mdpRewards, mdpSolnMethod, target, inf, min, init, known, strat); |
|
|
|
|
|
|
|
// Store strategy |
|
|
|
if (genStrat) { |
|
|
|
@ -1668,6 +1577,32 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
return res; |
|
|
|
} |
|
|
|
|
|
|
|
protected ModelCheckerResult computeReachRewardsNumeric(MDP mdp, MDPRewards mdpRewards, MDPSolnMethod method, BitSet target, BitSet inf, boolean min, double init[], BitSet known, int strat[]) throws PrismException |
|
|
|
{ |
|
|
|
ModelCheckerResult res = null; |
|
|
|
|
|
|
|
IterationMethod iterationMethod = null; |
|
|
|
switch (method) { |
|
|
|
case VALUE_ITERATION: |
|
|
|
iterationMethod = new IterationMethodPower(termCrit == TermCrit.ABSOLUTE, termCritParam); |
|
|
|
break; |
|
|
|
case GAUSS_SEIDEL: |
|
|
|
iterationMethod = new IterationMethodGS(termCrit == TermCrit.ABSOLUTE, termCritParam, false); |
|
|
|
break; |
|
|
|
case POLICY_ITERATION: |
|
|
|
res = computeReachRewardsPolIter(mdp, mdpRewards, target, inf, min, strat); |
|
|
|
break; |
|
|
|
default: |
|
|
|
throw new PrismException("Unknown MDP solution method " + method.fullName()); |
|
|
|
} |
|
|
|
|
|
|
|
if (res == null) { // not yet computed, use iterationMethod |
|
|
|
res = doValueIterationReachRewards(mdp, mdpRewards, iterationMethod, target, inf, min, init, known, false, strat); |
|
|
|
} |
|
|
|
|
|
|
|
return res; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Compute expected reachability rewards using value iteration. |
|
|
|
* Optionally, store optimal (memoryless) strategy info. |
|
|
|
@ -1684,42 +1619,58 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
protected ModelCheckerResult computeReachRewardsValIter(MDP mdp, MDPRewards mdpRewards, BitSet target, BitSet inf, boolean min, double init[], BitSet known, int strat[]) |
|
|
|
throws PrismException |
|
|
|
{ |
|
|
|
ModelCheckerResult res; |
|
|
|
IterationMethodPower iterationMethod = new IterationMethodPower(termCrit == TermCrit.ABSOLUTE, termCritParam); |
|
|
|
return doValueIterationReachRewards(mdp, mdpRewards, iterationMethod, target, inf, min, init, known, min, strat); |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Compute expected reachability rewards using value iteration. |
|
|
|
* Optionally, store optimal (memoryless) strategy info. |
|
|
|
* @param mdp The MDP |
|
|
|
* @param mdpRewards The rewards |
|
|
|
* @param target Target states |
|
|
|
* @param inf States for which reward is infinite |
|
|
|
* @param min Min or max rewards (true=min, false=max) |
|
|
|
* @param init Optionally, an initial solution vector (will be overwritten) |
|
|
|
* @param known Optionally, a set of states for which the exact answer is known |
|
|
|
* @param topological Do topological value iteration? |
|
|
|
* @param strat Storage for (memoryless) strategy choice indices (ignored if null) |
|
|
|
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. |
|
|
|
*/ |
|
|
|
protected ModelCheckerResult doValueIterationReachRewards(MDP mdp, MDPRewards mdpRewards, IterationMethod iterationMethod, BitSet target, BitSet inf, boolean min, double init[], BitSet known, boolean topological, int strat[]) |
|
|
|
throws PrismException |
|
|
|
{ |
|
|
|
BitSet unknown; |
|
|
|
int i, n, iters; |
|
|
|
double soln[], soln2[], tmpsoln[]; |
|
|
|
boolean done; |
|
|
|
int i, n; |
|
|
|
long timer; |
|
|
|
|
|
|
|
// Start value iteration |
|
|
|
timer = System.currentTimeMillis(); |
|
|
|
mainLog.println("Starting value iteration (" + (min ? "min" : "max") + ")..."); |
|
|
|
String description = (min ? "min" : "max") + (topological ? ", topological" : "" ) + ", with " + iterationMethod.getDescriptionShort(); |
|
|
|
mainLog.println("Starting value iteration (" + description + ")..."); |
|
|
|
|
|
|
|
ExportIterations iterationsExport = null; |
|
|
|
if (settings.getBoolean(PrismSettings.PRISM_EXPORT_ITERATIONS)) { |
|
|
|
iterationsExport = new ExportIterations("Explicit MDP ReachProbs value iteration"); |
|
|
|
iterationsExport = new ExportIterations("Explicit MDP ReachRewards value iteration (" + description +")"); |
|
|
|
} |
|
|
|
|
|
|
|
// Store num states |
|
|
|
n = mdp.getNumStates(); |
|
|
|
|
|
|
|
// Create solution vector(s) |
|
|
|
soln = new double[n]; |
|
|
|
soln2 = (init == null) ? new double[n] : init; |
|
|
|
|
|
|
|
// Initialise solution vectors. Use (where available) the following in order of preference: |
|
|
|
// (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0 |
|
|
|
if (init != null) { |
|
|
|
if (known != null) { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = soln2[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; |
|
|
|
init[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; |
|
|
|
} else { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; |
|
|
|
init[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; |
|
|
|
} |
|
|
|
} else { |
|
|
|
init = new double[n]; |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0; |
|
|
|
init[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0; |
|
|
|
} |
|
|
|
|
|
|
|
// Determine set of states actually need to compute values for |
|
|
|
@ -1731,49 +1682,28 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
unknown.andNot(known); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.exportVector(soln, 0); |
|
|
|
iterationsExport.exportVector(init, 0); |
|
|
|
|
|
|
|
// Start iterations |
|
|
|
iters = 0; |
|
|
|
done = false; |
|
|
|
while (!done && iters < maxIters) { |
|
|
|
//mainLog.println(soln); |
|
|
|
iters++; |
|
|
|
// Matrix-vector multiply and min/max ops |
|
|
|
mdp.mvMultRewMinMax(soln, mdpRewards, min, soln2, unknown, false, strat); |
|
|
|
IterationMethod.IterationValIter forMvMultRewMinMax = iterationMethod.forMvMultRewMinMax(mdp, mdpRewards, min, strat); |
|
|
|
forMvMultRewMinMax.init(init); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.exportVector(soln2, 0); |
|
|
|
IntSet unknownStates = IntSet.asIntSet(unknown); |
|
|
|
|
|
|
|
// Check termination |
|
|
|
done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); |
|
|
|
// Swap vectors for next iter |
|
|
|
tmpsoln = soln; |
|
|
|
soln = soln2; |
|
|
|
soln2 = tmpsoln; |
|
|
|
} |
|
|
|
if (topological) { |
|
|
|
// Compute SCCInfo, including trivial SCCs in the subgraph obtained when only considering |
|
|
|
// states in unknown |
|
|
|
SCCInfo sccs = SCCComputer.computeTopologicalOrdering(this, mdp, true, unknown::get); |
|
|
|
|
|
|
|
if (iterationsExport != null) |
|
|
|
iterationsExport.close(); |
|
|
|
|
|
|
|
// Finished value iteration |
|
|
|
timer = System.currentTimeMillis() - timer; |
|
|
|
mainLog.print("Value iteration (" + (min ? "min" : "max") + ")"); |
|
|
|
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); |
|
|
|
IterationMethod.SingletonSCCSolver singletonSCCSolver = (int s, double[] soln) -> { |
|
|
|
soln[s] = mdp.mvMultRewJacMinMaxSingle(s, soln, mdpRewards, min, strat); |
|
|
|
}; |
|
|
|
|
|
|
|
// Non-convergence is an error (usually) |
|
|
|
if (!done && errorOnNonConverge) { |
|
|
|
String msg = "Iterative method did not converge within " + iters + " iterations."; |
|
|
|
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; |
|
|
|
throw new PrismException(msg); |
|
|
|
// run the actual value iteration |
|
|
|
return iterationMethod.doTopologicalValueIteration(this, description, sccs, forMvMultRewMinMax, singletonSCCSolver, timer, iterationsExport); |
|
|
|
} else { |
|
|
|
// run the actual value iteration |
|
|
|
return iterationMethod.doValueIteration(this, description, forMvMultRewMinMax, unknownStates, timer, iterationsExport); |
|
|
|
} |
|
|
|
|
|
|
|
// Return results |
|
|
|
res = new ModelCheckerResult(); |
|
|
|
res.soln = soln; |
|
|
|
res.numIters = iters; |
|
|
|
res.timeTaken = timer / 1000.0; |
|
|
|
return res; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
@ -1792,76 +1722,8 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
protected ModelCheckerResult computeReachRewardsGaussSeidel(MDP mdp, MDPRewards mdpRewards, BitSet target, BitSet inf, boolean min, double init[], |
|
|
|
BitSet known, int strat[]) throws PrismException |
|
|
|
{ |
|
|
|
ModelCheckerResult res; |
|
|
|
BitSet unknown; |
|
|
|
int i, n, iters; |
|
|
|
double soln[], maxDiff; |
|
|
|
boolean done; |
|
|
|
long timer; |
|
|
|
|
|
|
|
// Start value iteration |
|
|
|
timer = System.currentTimeMillis(); |
|
|
|
mainLog.println("Starting Gauss-Seidel (" + (min ? "min" : "max") + ")..."); |
|
|
|
|
|
|
|
// Store num states |
|
|
|
n = mdp.getNumStates(); |
|
|
|
|
|
|
|
// Create solution vector(s) |
|
|
|
soln = (init == null) ? new double[n] : init; |
|
|
|
|
|
|
|
// Initialise solution vector. Use (where available) the following in order of preference: |
|
|
|
// (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0 |
|
|
|
if (init != null) { |
|
|
|
if (known != null) { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; |
|
|
|
} else { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; |
|
|
|
} |
|
|
|
} else { |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
soln[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0; |
|
|
|
} |
|
|
|
|
|
|
|
// Determine set of states actually need to compute values for |
|
|
|
unknown = new BitSet(); |
|
|
|
unknown.set(0, n); |
|
|
|
unknown.andNot(target); |
|
|
|
unknown.andNot(inf); |
|
|
|
if (known != null) |
|
|
|
unknown.andNot(known); |
|
|
|
|
|
|
|
// Start iterations |
|
|
|
iters = 0; |
|
|
|
done = false; |
|
|
|
while (!done && iters < maxIters) { |
|
|
|
//mainLog.println(soln); |
|
|
|
iters++; |
|
|
|
// Matrix-vector multiply and min/max ops |
|
|
|
maxDiff = mdp.mvMultRewGSMinMax(soln, mdpRewards, min, unknown, false, termCrit == TermCrit.ABSOLUTE, strat); |
|
|
|
// Check termination |
|
|
|
done = maxDiff < termCritParam; |
|
|
|
} |
|
|
|
|
|
|
|
// Finished Gauss-Seidel |
|
|
|
timer = System.currentTimeMillis() - timer; |
|
|
|
mainLog.print("Gauss-Seidel (" + (min ? "min" : "max") + ")"); |
|
|
|
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); |
|
|
|
|
|
|
|
// Non-convergence is an error (usually) |
|
|
|
if (!done && errorOnNonConverge) { |
|
|
|
String msg = "Iterative method did not converge within " + iters + " iterations."; |
|
|
|
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; |
|
|
|
throw new PrismException(msg); |
|
|
|
} |
|
|
|
|
|
|
|
// Return results |
|
|
|
res = new ModelCheckerResult(); |
|
|
|
res.soln = soln; |
|
|
|
res.numIters = iters; |
|
|
|
res.timeTaken = timer / 1000.0; |
|
|
|
return res; |
|
|
|
IterationMethodGS iterationMethod = new IterationMethodGS(termCrit == TermCrit.ABSOLUTE, termCritParam, false); |
|
|
|
return doValueIterationReachRewards(mdp, mdpRewards, iterationMethod, target, inf, min, init, known, min, strat); |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
|