You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
280 lines
7.6 KiB
280 lines
7.6 KiB
//==============================================================================
|
|
//
|
|
// Copyright (c) 2002-
|
|
// Authors:
|
|
// * Christian von Essen <christian.vonessen@imag.fr> (Verimag, Grenoble)
|
|
// * Dave Parker <d.a.parker@cs.bham.ac.uk> (University of Birmingham/Oxford)
|
|
// * Joachim Klein <klein@tcs.inf.tu-dresden.de> (TU Dresden)
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// This file is part of PRISM.
|
|
//
|
|
// PRISM is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PRISM is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with PRISM; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
//==============================================================================
|
|
|
|
package explicit;
|
|
|
|
import java.util.ArrayDeque;
|
|
import java.util.Arrays;
|
|
import java.util.BitSet;
|
|
import java.util.Deque;
|
|
import java.util.function.IntPredicate;
|
|
|
|
import prism.PrismComponent;
|
|
import prism.PrismException;
|
|
|
|
/**
|
|
* Tarjan's SCC algorithm operating on a Model object, implemented
|
|
* without recursion, i.e., using an explicit stack. This allows to
|
|
* deal with deep models without exhausting the Java stack.
|
|
*/
|
|
public class SCCComputerTarjanIterative extends SCCComputer
|
|
{
|
|
/* The model to compute (B)SCCs for */
|
|
private Model model;
|
|
/* Number of nodes (model states) */
|
|
private int numNodes;
|
|
|
|
/* Next index to give to a node */
|
|
private int index = 0;
|
|
/* Stack of nodes */
|
|
private Deque<Integer> stack = new ArrayDeque<Integer>();
|
|
/* Nodes currently on the stack. */
|
|
private BitSet onStack = new BitSet();
|
|
|
|
/** The lowlink information for the nodes (states) */
|
|
private int[] nodeLowlink;
|
|
/** The index information for the nodes (states) */
|
|
private int[] nodeIndex;
|
|
|
|
/** The stack for simulating the recursive calls of Tarjan's algorithm */
|
|
private Deque<StackFrame> recursionStack = new ArrayDeque<>();
|
|
|
|
/**
|
|
* Set to remember those states that had a direct self loop
|
|
* (to distinguish between trivial and non-trivial single state SCCs
|
|
* if we have to filter the former).
|
|
*/
|
|
private BitSet statesWithSelfloop;
|
|
|
|
/** Should we filter trivial SCCs? */
|
|
private boolean filterTrivialSCCs;
|
|
|
|
/**
|
|
* (optional) A predicate to restrict the explored state space
|
|
* and transition relation to those states that satisfy restrict
|
|
*/
|
|
private IntPredicate restrict;
|
|
|
|
/**
|
|
* Build (B)SCC computer for a given model.
|
|
*/
|
|
public SCCComputerTarjanIterative(PrismComponent parent, Model model, SCCConsumer consumer) throws PrismException
|
|
{
|
|
super(parent, consumer);
|
|
this.model = model;
|
|
this.numNodes = model.getNumStates();
|
|
nodeLowlink = new int[numNodes];
|
|
Arrays.fill(nodeLowlink, -1);
|
|
nodeIndex = new int[numNodes];
|
|
Arrays.fill(nodeIndex, -1);
|
|
}
|
|
|
|
// Methods for SCCComputer interface
|
|
|
|
@Override
|
|
public void computeSCCs(boolean filterTrivialSCCs, IntPredicate restrict) throws PrismException
|
|
{
|
|
this.filterTrivialSCCs = filterTrivialSCCs;
|
|
if (filterTrivialSCCs)
|
|
statesWithSelfloop = new BitSet();
|
|
consumer.notifyStart(model);
|
|
this.restrict = restrict;
|
|
tarjan();
|
|
consumer.notifyDone();
|
|
}
|
|
|
|
// SCC Computation
|
|
|
|
/**
|
|
* Execute Tarjan's algorithm. Determine maximal strongly connected components
|
|
* (SCCS) for the graph of the model and report to the consumer.
|
|
*/
|
|
public void tarjan() throws PrismException
|
|
{
|
|
for (int i = 0; i < numNodes; i++) {
|
|
if (restrict != null && !restrict.test(i))
|
|
continue; // skip state if not one of the relevant states
|
|
if (nodeLowlink[i] == -1) {
|
|
beginVisit(i);
|
|
loop();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Begin the visit to node i.
|
|
*/
|
|
private void beginVisit(int i)
|
|
{
|
|
// initialise index and lowindex
|
|
nodeIndex[i] = index;
|
|
nodeLowlink[i] = index;
|
|
index++;
|
|
// push on Tarjan stack
|
|
stack.push(i);
|
|
onStack.set(i);
|
|
// push corresponding frame (state and successor iterator) on the recursion stack
|
|
recursionStack.push(new StackFrame(i, model.getSuccessors(i)));
|
|
}
|
|
|
|
/** Main loop, process the recursion stack until empty */
|
|
private void loop() throws PrismException
|
|
{
|
|
while (!recursionStack.isEmpty()) {
|
|
StackFrame frame = recursionStack.peek();
|
|
// the current node
|
|
int v = frame.getNode();
|
|
|
|
if (frame.hasPending()) {
|
|
// first, finish the visit of the previous edge, if there was one
|
|
int w = frame.getPending();
|
|
nodeLowlink[v] = Math.min(nodeLowlink[v], nodeLowlink[w]);
|
|
}
|
|
|
|
final int w = frame.nextSuccessor(restrict);
|
|
if (w != -1) {
|
|
if (v == w) {
|
|
// a self loop
|
|
if (statesWithSelfloop != null)
|
|
statesWithSelfloop.set(v);
|
|
|
|
// ignore this edge, continue with loop
|
|
frame.clearPending();
|
|
continue;
|
|
}
|
|
|
|
if (nodeIndex[w] == -1) {
|
|
// setup visit of successor w, then continue with loop
|
|
beginVisit(w);
|
|
continue;
|
|
} else if (onStack.get(w)) {
|
|
// back edge, update lowlink, don't explore successor
|
|
nodeLowlink[v] = Math.min(nodeLowlink[v], nodeIndex[w]);
|
|
}
|
|
// the current edge v->w is not actually explored,
|
|
// so we clear the pending successor (w) in the frame
|
|
// and continue with the loop
|
|
frame.clearPending();
|
|
continue;
|
|
}
|
|
|
|
// no more successors for this frame, remove from recursion stack
|
|
recursionStack.pop();
|
|
|
|
// finished exploring node v, perform necessary steps
|
|
if (nodeLowlink[v] == nodeIndex[v]) {
|
|
// we have found the root node of an SCC
|
|
|
|
// this is a singleton SCC if the top of the stack equals i
|
|
boolean singletonSCC = (stack.peek() == v);
|
|
if (singletonSCC && filterTrivialSCCs) {
|
|
if (!statesWithSelfloop.get(v)) {
|
|
// singleton SCC & no selfloop -> trivial
|
|
// ignore this SCC and cleanup the Tarjan stack
|
|
stack.pop();
|
|
onStack.set(v, false);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int n;
|
|
consumer.notifyStartSCC();
|
|
do {
|
|
n = stack.pop();
|
|
onStack.set(n, false);
|
|
consumer.notifyStateInSCC(n);
|
|
} while (n != v);
|
|
consumer.notifyEndSCC();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The stack frame with all the information for Tarjan's algorithm
|
|
* (current node, successor iterator, currently explored edge).
|
|
*/
|
|
private static class StackFrame {
|
|
/** The current 'from' node */
|
|
int node;
|
|
/** The iterator over the successors */
|
|
private SuccessorsIterator it;
|
|
/** The successor that is currently explored (-1 = none) */
|
|
private int pending = -1;
|
|
|
|
/** Constructor */
|
|
StackFrame(int node, SuccessorsIterator it) {
|
|
this.node = node;
|
|
this.it = it;
|
|
}
|
|
|
|
/** Get the current node */
|
|
public int getNode()
|
|
{
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* Returns the next successor. If there is none, returns {@code -1}.
|
|
* If restrict is non-null, only those successors that satisfy restrict are returned.
|
|
*/
|
|
public int nextSuccessor(IntPredicate restrict)
|
|
{
|
|
while (it.hasNext()) {
|
|
int i = it.nextInt();
|
|
if (restrict != null && !restrict.test(i))
|
|
// skip
|
|
continue;
|
|
|
|
pending = i;
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/** Do we have a successor whose edge is currently explored? */
|
|
public boolean hasPending()
|
|
{
|
|
return pending != -1;
|
|
}
|
|
|
|
/** Return (and clear) the current pending successor */
|
|
public int getPending() {
|
|
int p = pending;
|
|
pending = -1;
|
|
return p;
|
|
}
|
|
|
|
/** Clear the current pending successor */
|
|
public void clearPending()
|
|
{
|
|
pending = -1;
|
|
}
|
|
|
|
}
|
|
|
|
}
|