You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

336 lines
9.6 KiB

//==============================================================================
//
// Copyright (c) 2002-2004, Dave Parker
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
// includes
#include "PrismSparse.h"
#include <math.h>
#include <util.h>
#include <cudd.h>
#include <dd.h>
#include <odd.h>
#include <dv.h>
#include "foxglynn.h"
#include "sparse.h"
#include "PrismSparseGlob.h"
//------------------------------------------------------------------------------
JNIEXPORT jint JNICALL Java_sparse_PrismSparse_PS_1StochBoundedUntil
(
JNIEnv *env,
jclass cls,
jint tr, // trans matrix
jint od, // odd
jint rv, // row vars
jint num_rvars,
jint cv, // col vars
jint num_cvars,
jint ye, // 'yes' states
jint ma, // 'maybe' states
jdouble time, // time bound
jint mu // probs for multiplying
)
{
// cast function parameters
DdNode *trans = (DdNode *)tr; // trans matrix
ODDNode *odd = (ODDNode *)od; // odd
DdNode **rvars = (DdNode **)rv; // row vars
DdNode **cvars = (DdNode **)cv; // col vars
DdNode *yes = (DdNode *)ye; // 'yes' states
DdNode *maybe = (DdNode *)ma; // 'maybe' states
double *mult = (double *)mu; // probs for multiplying
// model stats
int n;
long nnz;
// mtbdds
DdNode *r;
// flags
bool compact_tr, compact_d;
// sparse matrix
RMSparseMatrix *rmsm;
CMSRSparseMatrix *cmsrsm;
// vectors
double *diags, *soln, *soln2, *tmpsoln, *sum;
DistVector *diags_dist;
// fox glynn stuff
FoxGlynnWeights fgw;
// timing stuff
long start1, start2, start3, stop;
double time_taken, time_for_setup, time_for_iters;
// misc
bool done;
int i, j, l, h, iters, num_iters;
double d, x, max_diag, weight, kb, kbt, unif;
// start clocks
start1 = start2 = util_cpu_time();
// get number of states
n = odd->eoff + odd->toff;
// count number of states to be made absorbing
x = DD_GetNumMinterms(ddman, maybe, num_rvars);
PS_PrintToMainLog(env, "\nNumber of non-absorbing states: %.0f of %d (%.1f%%)\n", x, n, 100.0*(x/n));
// filter out rows from rate matrix
Cudd_Ref(trans);
Cudd_Ref(maybe);
r = DD_Apply(ddman, APPLY_TIMES, trans, maybe);
// build sparse matrix
PS_PrintToMainLog(env, "\nBuilding sparse matrix... ");
// if requested, try and build a "compact" version
compact_tr = true;
cmsrsm = NULL;
if (compact) cmsrsm = build_cmsr_sparse_matrix(ddman, r, rvars, cvars, num_rvars, odd);
if (cmsrsm != NULL) {
nnz = cmsrsm->nnz;
kb = cmsrsm->mem;
}
// if not or if it wasn't possible, built a normal one
else {
compact_tr = false;
rmsm = build_rm_sparse_matrix(ddman, r, rvars, cvars, num_rvars, odd);
nnz = rmsm->nnz;
kb = rmsm->mem;
}
// print some info
PS_PrintToMainLog(env, "[n=%d, nnz=%d%s] ", n, nnz, compact_tr?", compact":"");
kbt = kb;
PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
// get vector of diagonals
PS_PrintToMainLog(env, "Creating vector for diagonals... ");
diags = compact_tr ? cmsr_negative_row_sums(cmsrsm) : rm_negative_row_sums(rmsm);
// try and convert to compact form if required
compact_d = false;
if (compact) {
if (diags_dist = double_vector_to_dist(diags, n)) {
compact_d = true;
free(diags);
}
}
kb = (!compact_d) ? n*8.0/1024.0 : (diags_dist->num_dist*8.0+n*2.0)/1024.0;
kbt += kb;
if (!compact_d) PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
else PS_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", diags_dist->num_dist, kb);
// find max diagonal element
if (!compact_d) {
max_diag = diags[0];
for (i = 1; i < n; i++) if (diags[i] < max_diag) max_diag = diags[i];
} else {
max_diag = diags_dist->dist[0];
for (i = 1; i < diags_dist->num_dist; i++) if (diags_dist->dist[i] < max_diag) max_diag = diags_dist->dist[i];
}
max_diag = -max_diag;
// constant for uniformization
unif = 1.02*max_diag;
// modify diagonals
if (!compact_d) {
for (i = 0; i < n; i++) diags[i] = diags[i] / unif + 1;
} else {
for (i = 0; i < diags_dist->num_dist; i++) diags_dist->dist[i] = diags_dist->dist[i] / unif + 1;
}
// uniformization
if (!compact_tr) {
for (i = 0; i < nnz; i++) rmsm->non_zeros[i] /= unif;
} else {
for (i = 0; i < cmsrsm->dist_num; i++) cmsrsm->dist[i] /= unif;
}
// create solution/iteration vectors
PS_PrintToMainLog(env, "Allocating iteration vectors... ");
soln = mtbdd_to_double_vector(ddman, yes, rvars, num_rvars, odd);
soln2 = new double[n];
sum = new double[n];
kb = n*8.0/1024.0;
kbt += 3*kb;
PS_PrintToMainLog(env, "[3 x %.1f KB]\n", kb);
// multiply initial solution by 'mult' probs
if (mult != NULL) {
for (i = 0; i < n; i++) {
soln[i] *= mult[i];
}
}
// print total memory usage
PS_PrintToMainLog(env, "TOTAL: [%.1f KB]\n", kbt);
// compute poisson probabilities (fox/glynn)
PS_PrintToMainLog(env, "\nUniformisation: q.t = %f x %f = %f\n", unif, time, unif * time);
fgw = fox_glynn(unif * time, 1.0e-300, 1.0e+300, term_crit_param);
for (i = fgw.left; i <= fgw.right; i++) {
fgw.weights[i-fgw.left] /= fgw.total_weight;
}
PS_PrintToMainLog(env, "Fox-Glynn: left = %d, right = %d\n", fgw.left, fgw.right);
// set up vectors
for (i = 0; i < n; i++) {
sum[i] = 0.0;
}
// get setup time
stop = util_cpu_time();
time_for_setup = (double)(stop - start2)/1000;
start2 = stop;
// start transient analysis
done = false;
num_iters = -1;
PS_PrintToMainLog(env, "\nStarting iterations...\n");
// if necessary, do 0th element of summation (doesn't require any matrix powers)
if (fgw.left == 0) for (i = 0; i < n; i++) {
sum[i] += fgw.weights[0] * soln[i];
}
// note that we ignore max_iters as we know how any iterations _should_ be performed
for (iters = 1; (iters <= fgw.right) && !done; iters++) {
// PS_PrintToMainLog(env, "Iteration %d: ", iters);
// start3 = util_cpu_time();
// store local copies of stuff
double *non_zeros;
unsigned char *row_counts;
int *row_starts;
bool use_counts;
unsigned int *cols;
double *dist;
int dist_shift;
int dist_mask;
if (!compact_tr) {
non_zeros = rmsm->non_zeros;
row_counts = rmsm->row_counts;
row_starts = (int *)rmsm->row_counts;
use_counts = rmsm->use_counts;
cols = rmsm->cols;
} else {
row_counts = cmsrsm->row_counts;
row_starts = (int *)cmsrsm->row_counts;
use_counts = cmsrsm->use_counts;
cols = cmsrsm->cols;
dist = cmsrsm->dist;
dist_shift = cmsrsm->dist_shift;
dist_mask = cmsrsm->dist_mask;
}
// do matrix vector multiply bit
h = 0;
for (i = 0; i < n; i++) {
d = (!compact_d) ? (diags[i] * soln[i]) : (diags_dist->dist[diags_dist->ptrs[i]] * soln[i]);
if (!use_counts) { l = row_starts[i]; h = row_starts[i+1]; }
else { l = h; h += row_counts[i]; }
// "row major" version
if (!compact_tr) {
for (j = l; j < h; j++) {
d += non_zeros[j] * soln[cols[j]];
}
// "compact msr" version
} else {
for (j = l; j < h; j++) {
d += dist[(int)(cols[j] & dist_mask)] * soln[(int)(cols[j] >> dist_shift)];
}
}
// set vector element
soln2[i] = d;
}
// check for steady state convergence
// (note: doing outside loop means may not need to check all elements)
if (do_ss_detect) switch (term_crit) {
case TERM_CRIT_ABSOLUTE:
done = true;
for (i = 0; i < n; i++) {
if (fabs(soln2[i] - soln[i]) > term_crit_param) {
done = false;
break;
}
}
break;
case TERM_CRIT_RELATIVE:
done = true;
for (i = 0; i < n; i++) {
if (fabs((soln2[i] - soln[i])/soln2[i]) > term_crit_param) {
done = false;
break;
}
}
break;
}
// special case when finished early (steady-state detected)
if (done) {
// work out sum of remaining poisson probabilities
if (iters <= fgw.left) {
weight = 1.0;
} else {
weight = 0.0;
for (i = iters; i <= fgw.right; i++) {
weight += fgw.weights[i-fgw.left];
}
}
// add to sum
for (i = 0; i < n; i++) sum[i] += weight * soln2[i];
PS_PrintToMainLog(env, "\nSteady state detected at iteration %d\n", iters);
num_iters = iters;
break;
}
// prepare for next iteration
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
// add to sum
if (iters >= fgw.left) {
for (i = 0; i < n; i++) sum[i] += fgw.weights[iters-fgw.left] * soln[i];
}
// PS_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters);
}
// stop clocks
stop = util_cpu_time();
time_for_iters = (double)(stop - start2)/1000;
time_taken = (double)(stop - start1)/1000;
// print iters/timing info
if (num_iters == -1) num_iters = fgw.right;
PS_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", num_iters, time_taken, time_for_iters/num_iters, time_for_setup);
// free memory
Cudd_RecursiveDeref(ddman, r);
if (compact_tr) free_cmsr_sparse_matrix(cmsrsm); else free_rm_sparse_matrix(rmsm);
if (compact_d) free_dist_vector(diags_dist); else free(diags);
delete soln;
delete soln2;
return (int)sum;
}
//------------------------------------------------------------------------------