You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
6.4 KiB
200 lines
6.4 KiB
//==============================================================================
|
|
//
|
|
// Copyright (c) 2002-
|
|
// Authors:
|
|
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// This file is part of PRISM.
|
|
//
|
|
// PRISM is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PRISM is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with PRISM; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
//==============================================================================
|
|
|
|
// includes
|
|
#include "PrismMTBDD.h"
|
|
#include <cmath>
|
|
#include <util.h>
|
|
#include <cudd.h>
|
|
#include <dd.h>
|
|
#include <odd.h>
|
|
#include "PrismMTBDDGlob.h"
|
|
#include "jnipointer.h"
|
|
#include "prism.h"
|
|
#include "ExportIterations.h"
|
|
#include <memory>
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// solve the linear equation system Ax=x with the Power method
|
|
// in addition, solutions may be provided for additional states in the vector b
|
|
// these states are assumed not to have non-zero rows in the matrix A
|
|
|
|
JNIEXPORT jlong __jlongpointer JNICALL Java_mtbdd_PrismMTBDD_PM_1Power
|
|
(
|
|
JNIEnv *env,
|
|
jclass cls,
|
|
jlong __jlongpointer _odd, // odd
|
|
jlong __jlongpointer rv, // row vars
|
|
jint num_rvars,
|
|
jlong __jlongpointer cv, // col vars
|
|
jint num_cvars,
|
|
jlong __jlongpointer _a, // matrix A
|
|
jlong __jlongpointer _b, // vector b (if null, assume all zero)
|
|
jlong __jlongpointer _init, // init soln
|
|
jboolean transpose // transpose A? (i.e. solve xA=b not Ax=b?)
|
|
)
|
|
{
|
|
// cast function parameters
|
|
ODDNode *odd = jlong_to_ODDNode(_odd); // odd
|
|
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
|
|
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
|
|
DdNode *a = jlong_to_DdNode(_a); // matrix A
|
|
DdNode *b = jlong_to_DdNode(_b); // vector b
|
|
DdNode *init = jlong_to_DdNode(_init); // init soln
|
|
|
|
// mtbdds
|
|
DdNode *reach, *sol, *tmp;
|
|
// timing stuff
|
|
long start1, start2, start3, stop;
|
|
double time_taken, time_for_setup, time_for_iters;
|
|
// misc
|
|
int i, iters;
|
|
bool done;
|
|
|
|
// start clocks
|
|
start1 = start2 = util_cpu_time();
|
|
|
|
// make local copy of b
|
|
Cudd_Ref(b);
|
|
|
|
// print out some memory usage
|
|
i = DD_GetNumNodes(ddman, a);
|
|
PM_PrintToMainLog(env, "\nIteration matrix MTBDD... [nodes=%d] [%.1f Kb]\n", i, i*20.0/1024.0);
|
|
|
|
// transpose b if necessary
|
|
if (transpose) {
|
|
b = DD_PermuteVariables(ddman, b, rvars, cvars, num_rvars);
|
|
}
|
|
|
|
// store initial solution, transposing if necessary
|
|
Cudd_Ref(init);
|
|
sol = init;
|
|
if (transpose) {
|
|
sol = DD_PermuteVariables(ddman, sol, rvars, cvars, num_rvars);
|
|
}
|
|
|
|
std::unique_ptr<ExportIterations> iterationExport;
|
|
if (PM_GetFlagExportIterations()) {
|
|
iterationExport.reset(new ExportIterations("PM_Power"));
|
|
PM_PrintToMainLog(env, "Exporting iterations to %s\n", iterationExport->getFileName().c_str());
|
|
iterationExport->exportVector(sol, (transpose?cvars:rvars), num_rvars, odd, 0);
|
|
}
|
|
|
|
// get setup time
|
|
stop = util_cpu_time();
|
|
time_for_setup = (double)(stop - start2)/1000;
|
|
start2 = stop;
|
|
start3 = stop;
|
|
|
|
// start iterations
|
|
iters = 0;
|
|
done = false;
|
|
PM_PrintToMainLog(env, "\nStarting iterations...\n");
|
|
|
|
while (!done && iters < max_iters) {
|
|
|
|
iters++;
|
|
|
|
// matrix multiply
|
|
Cudd_Ref(sol);
|
|
tmp = DD_PermuteVariables(ddman, sol, (transpose?cvars:rvars), (transpose?rvars:cvars), num_rvars);
|
|
Cudd_Ref(a);
|
|
tmp = DD_MatrixMultiply(ddman, a, tmp, (transpose?rvars:cvars), num_cvars, MM_BOULDER);
|
|
Cudd_Ref(b);
|
|
tmp = DD_Apply(ddman, APPLY_PLUS, tmp, b);
|
|
|
|
if (iterationExport)
|
|
iterationExport->exportVector(tmp, (transpose?cvars:rvars), num_rvars, odd, 0);
|
|
|
|
// check convergence
|
|
switch (term_crit) {
|
|
case TERM_CRIT_ABSOLUTE:
|
|
if (DD_EqualSupNorm(ddman, tmp, sol, term_crit_param)) {
|
|
done = true;
|
|
}
|
|
break;
|
|
case TERM_CRIT_RELATIVE:
|
|
if (DD_EqualSupNormRel(ddman, tmp, sol, term_crit_param)) {
|
|
done = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// print occasional status update
|
|
if ((util_cpu_time() - start3) > UPDATE_DELAY) {
|
|
PM_PrintToMainLog(env, "Iteration %d: ", iters);
|
|
PM_PrintToMainLog(env, "%.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000));
|
|
start3 = util_cpu_time();
|
|
}
|
|
|
|
// store accuracy info, once converged
|
|
// the difference between vector values is not a reliable error bound
|
|
// but we store it anyway in case it is useful for estimating a bound
|
|
// TODO: handle cases where result is zero
|
|
if (done) {
|
|
Cudd_Ref(tmp);
|
|
Cudd_Ref(sol);
|
|
DdNode* difference = DD_Apply(ddman, APPLY_MINUS, tmp, sol);
|
|
if (term_crit == TERM_CRIT_RELATIVE) {
|
|
Cudd_Ref(tmp);
|
|
difference = DD_Apply(ddman, APPLY_DIVIDE, difference, tmp);
|
|
}
|
|
// No DD absolute operator so check most +ve/-ve
|
|
double max_diff = fabs(DD_FindMax(ddman, difference));
|
|
double min_diff = fabs(DD_FindMin(ddman, difference));
|
|
last_error_bound = max_diff > min_diff ? max_diff : min_diff;
|
|
Cudd_RecursiveDeref(ddman, difference);
|
|
}
|
|
|
|
// prepare for next iteration
|
|
Cudd_RecursiveDeref(ddman, sol);
|
|
sol = tmp;
|
|
}
|
|
|
|
// transpose solution if necessary
|
|
if (transpose) {
|
|
sol = DD_PermuteVariables(ddman, sol, cvars, rvars, num_rvars);
|
|
}
|
|
|
|
// stop clocks
|
|
stop = util_cpu_time();
|
|
time_for_iters = (double)(stop - start2)/1000;
|
|
time_taken = (double)(stop - start1)/1000;
|
|
|
|
// print iters/timing info
|
|
PM_PrintToMainLog(env, "\nPower method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup);
|
|
|
|
// free memory
|
|
Cudd_RecursiveDeref(ddman, b);
|
|
|
|
// if the iterative method didn't terminate, this is an error
|
|
if (!done) { Cudd_RecursiveDeref(ddman, sol); PM_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); return 0; }
|
|
|
|
return ptr_to_jlong(sol);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|