You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

200 lines
6.4 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
// includes
#include "PrismMTBDD.h"
#include <cmath>
#include <util.h>
#include <cudd.h>
#include <dd.h>
#include <odd.h>
#include "PrismMTBDDGlob.h"
#include "jnipointer.h"
#include "prism.h"
#include "ExportIterations.h"
#include <memory>
//------------------------------------------------------------------------------
// solve the linear equation system Ax=x with the Power method
// in addition, solutions may be provided for additional states in the vector b
// these states are assumed not to have non-zero rows in the matrix A
JNIEXPORT jlong __jlongpointer JNICALL Java_mtbdd_PrismMTBDD_PM_1Power
(
JNIEnv *env,
jclass cls,
jlong __jlongpointer _odd, // odd
jlong __jlongpointer rv, // row vars
jint num_rvars,
jlong __jlongpointer cv, // col vars
jint num_cvars,
jlong __jlongpointer _a, // matrix A
jlong __jlongpointer _b, // vector b (if null, assume all zero)
jlong __jlongpointer _init, // init soln
jboolean transpose // transpose A? (i.e. solve xA=b not Ax=b?)
)
{
// cast function parameters
ODDNode *odd = jlong_to_ODDNode(_odd); // odd
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
DdNode *a = jlong_to_DdNode(_a); // matrix A
DdNode *b = jlong_to_DdNode(_b); // vector b
DdNode *init = jlong_to_DdNode(_init); // init soln
// mtbdds
DdNode *reach, *sol, *tmp;
// timing stuff
long start1, start2, start3, stop;
double time_taken, time_for_setup, time_for_iters;
// misc
int i, iters;
bool done;
// start clocks
start1 = start2 = util_cpu_time();
// make local copy of b
Cudd_Ref(b);
// print out some memory usage
i = DD_GetNumNodes(ddman, a);
PM_PrintToMainLog(env, "\nIteration matrix MTBDD... [nodes=%d] [%.1f Kb]\n", i, i*20.0/1024.0);
// transpose b if necessary
if (transpose) {
b = DD_PermuteVariables(ddman, b, rvars, cvars, num_rvars);
}
// store initial solution, transposing if necessary
Cudd_Ref(init);
sol = init;
if (transpose) {
sol = DD_PermuteVariables(ddman, sol, rvars, cvars, num_rvars);
}
std::unique_ptr<ExportIterations> iterationExport;
if (PM_GetFlagExportIterations()) {
iterationExport.reset(new ExportIterations("PM_Power"));
PM_PrintToMainLog(env, "Exporting iterations to %s\n", iterationExport->getFileName().c_str());
iterationExport->exportVector(sol, (transpose?cvars:rvars), num_rvars, odd, 0);
}
// get setup time
stop = util_cpu_time();
time_for_setup = (double)(stop - start2)/1000;
start2 = stop;
start3 = stop;
// start iterations
iters = 0;
done = false;
PM_PrintToMainLog(env, "\nStarting iterations...\n");
while (!done && iters < max_iters) {
iters++;
// matrix multiply
Cudd_Ref(sol);
tmp = DD_PermuteVariables(ddman, sol, (transpose?cvars:rvars), (transpose?rvars:cvars), num_rvars);
Cudd_Ref(a);
tmp = DD_MatrixMultiply(ddman, a, tmp, (transpose?rvars:cvars), num_cvars, MM_BOULDER);
Cudd_Ref(b);
tmp = DD_Apply(ddman, APPLY_PLUS, tmp, b);
if (iterationExport)
iterationExport->exportVector(tmp, (transpose?cvars:rvars), num_rvars, odd, 0);
// check convergence
switch (term_crit) {
case TERM_CRIT_ABSOLUTE:
if (DD_EqualSupNorm(ddman, tmp, sol, term_crit_param)) {
done = true;
}
break;
case TERM_CRIT_RELATIVE:
if (DD_EqualSupNormRel(ddman, tmp, sol, term_crit_param)) {
done = true;
}
break;
}
// print occasional status update
if ((util_cpu_time() - start3) > UPDATE_DELAY) {
PM_PrintToMainLog(env, "Iteration %d: ", iters);
PM_PrintToMainLog(env, "%.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000));
start3 = util_cpu_time();
}
// store accuracy info, once converged
// the difference between vector values is not a reliable error bound
// but we store it anyway in case it is useful for estimating a bound
// TODO: handle cases where result is zero
if (done) {
Cudd_Ref(tmp);
Cudd_Ref(sol);
DdNode* difference = DD_Apply(ddman, APPLY_MINUS, tmp, sol);
if (term_crit == TERM_CRIT_RELATIVE) {
Cudd_Ref(tmp);
difference = DD_Apply(ddman, APPLY_DIVIDE, difference, tmp);
}
// No DD absolute operator so check most +ve/-ve
double max_diff = fabs(DD_FindMax(ddman, difference));
double min_diff = fabs(DD_FindMin(ddman, difference));
last_error_bound = max_diff > min_diff ? max_diff : min_diff;
Cudd_RecursiveDeref(ddman, difference);
}
// prepare for next iteration
Cudd_RecursiveDeref(ddman, sol);
sol = tmp;
}
// transpose solution if necessary
if (transpose) {
sol = DD_PermuteVariables(ddman, sol, cvars, rvars, num_rvars);
}
// stop clocks
stop = util_cpu_time();
time_for_iters = (double)(stop - start2)/1000;
time_taken = (double)(stop - start1)/1000;
// print iters/timing info
PM_PrintToMainLog(env, "\nPower method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup);
// free memory
Cudd_RecursiveDeref(ddman, b);
// if the iterative method didn't terminate, this is an error
if (!done) { Cudd_RecursiveDeref(ddman, sol); PM_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); return 0; }
return ptr_to_jlong(sol);
}
//------------------------------------------------------------------------------