You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

52 lines
2.0 KiB

// Properties based on those from [HHK00]
// left_operational_i : left_n>=i & toleft_n
// right_operational_i : right_n>=i & toright_n
// operational_i : (left_n+right_n)>=i & toleft_n & line_n & toright_n
// minimum_k : left_operational_k | right_operational_k | operational_k
// premium = minimum_N
label "minimum" = (left_n>=k & toleft_n) | (right_n>=k & toright_n) | ((left_n+right_n)>=k & toleft_n & line_n & toright_n);
label "premium" = (left_n>=left_mx & toleft_n) | (right_n>=right_mx & toright_n) | ((left_n+right_n)>=left_mx & toleft_n & line_n & toright_n);
const double T;
// In the long run, the probability that premium QoS will be delivered
S=? [ "premium" ]
// In the long run, the chance that QoS is below minimum
S=? [ !"minimum" ]
// The system will always be able to offer premium QoS at some point in the future
P>=1 [ true U "premium" ]
// The chance that QoS drops below minimum quality within T time units
// (from the initial state)
P=? [ true U<=T !"minimum" ]
// If facing insufficient QoS, the maximum probability of facing
// the same problem after T time units
P=? [ true U[T,T] !"minimum" {!"minimum"}{max} ]
// The minimum probability of going from minimum QoS to premium QoS
// within T time units
P=? [ true U<=T "premium" {"minimum"}{min} ]
// The minimum probability of going from minimum QoS to premium QoS
// within T time units without violating the minimum QoS constraint along the way
P=? [ "minimum" U<=T "premium" {"minimum"}{min} ]
// The maximum probability that it takes more than T time units
// to recover from insufficient QoS
P=? [ !"minimum" U>=T "minimum" {!"minimum"}{max} ]
// The minimum percentage of operational workstations at time T
// when starting from below minimum QoS
R{"percent_op"}=?[ I=T {!"minimum"}{min} ]
// The expected time (from the initial state)
// that the system spends below minimum QoS until time T
R{"time_not_min"}=?[ C<=T ]
// The expected number of repairs by time T (starting in the initial state)
R{"num_repairs"}=?[ C<=T ]