You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

163 lines
4.8 KiB

// POPTA extension of basic scheduler model from
// G. Norman, D. Parker and J. Sproston
// Model Checking for Probabilistic Timed Automata
// Formal Methods in System Design, 43(2):164-190, 2013
// added when a task is finished the first processor can enter a lower power state
// (consumes less power but longer to next perform tasks as has to warm up first)
popta
// sleep variable of processor 1 is hidden
observables
task1, task2, task3, task4, task5, task6, p1, p2, x1, x2 //,sleep1
endobservables
const double sleep; // probability P1 sleeps after finishing a task
module scheduler
// task status: 0 - not started, 1|2 - on processor 1|2, 3 - finished
task1 : [0..3]; // A+B
task2 : [0..3]; // CxD
task3 : [0..3]; // Cx(A+B)
task4 : [0..3]; // (A+B)+(CxD)
task5 : [0..3]; // DxCx(A+B)
task6 : [0..3]; // (DxCx(A+B)) + ((A+B)+(CxD))
// start task 1
[p1_add1] task1=0 -> (task1'=1);
[p2_add1] task1=0 -> (task1'=2);
// start task 2
[p1_mult2] task2=0 -> (task2'=1);
[p2_mult2] task2=0 -> (task2'=2);
// start task 3 (must wait for task 1 to complete)
[p1_mult3] task3=0 & task1=3 -> (task3'=1);
[p2_mult3] task3=0 & task1=3 -> (task3'=2);
// start task 4 (must wait for tasks 1 and 2 to complete)
[p1_add4] task4=0 & task1=3 & task2=3 -> (task4'=1);
[p2_add4] task4=0 & task1=3 & task2=3 -> (task4'=2);
// start task 5 (must wait for task 3 to complete)
[p1_mult5] task5=0 & task3=3 -> (task5'=1);
[p2_mult5] task5=0 & task3=3 -> (task5'=2);
// start task 6 (must wait for tasks 4 and 5 to complete)
[p1_add6] task6=0 & task4=3 & task5=3 -> (task6'=1);
[p2_add6] task6=0 & task4=3 & task5=3 -> (task6'=2);
// a task finishes on processor 1
[p1_done] task1=1 -> (task1'=3);
[p1_done] task2=1 -> (task2'=3);
[p1_done] task3=1 -> (task3'=3);
[p1_done] task4=1 -> (task4'=3);
[p1_done] task5=1 -> (task5'=3);
[p1_done] task6=1 -> (task6'=3);
// a task finishes on processor 2
[p2_done] task1=2 -> (task1'=3);
[p2_done] task2=2 -> (task2'=3);
[p2_done] task3=2 -> (task3'=3);
[p2_done] task4=2 -> (task4'=3);
[p2_done] task5=2 -> (task5'=3);
[p2_done] task6=2 -> (task6'=3);
endmodule
// processor 1
module P1
p1 : [0..5];
// 0 - initial location
// 1 - inactive (idle or sleep)
// 2,3 - waking (adding and multiplying)
// 4 - adding
// 5 - multiplying
sleep1 : [0..1]; // when processor is in sleep mode
x1 : clock; // local clock
invariant
(p1=0 => x1<=0) &
(p1=1 => true) &
(p1=2 => x1<=4) &
(p1=3 => x1<=4) &
(p1=4 => x1<=2) &
(p1=5 => x1<=3)
endinvariant
// initialise
[start] p1=0 -> 0.5 : (p1'=1) & (sleep1'=0) + 0.5 : (p1'=1) & (sleep1'=1);
// start from sleep state
[p1_add1] p1=1 & sleep1=1 -> (p1'=2) & (x1'=0) & (sleep1'=0); // add
[p1_add4] p1=1 & sleep1=1 -> (p1'=2) & (x1'=0) & (sleep1'=0); // add
[p1_add6] p1=1 & sleep1=1 -> (p1'=2) & (x1'=0) & (sleep1'=0); // add
[p1_mult2] p1=1 & sleep1=1 -> (p1'=3) & (x1'=0) & (sleep1'=0); // multiply
[p1_mult3] p1=1 & sleep1=1 -> (p1'=3) & (x1'=0) & (sleep1'=0); // multiply
[p1_mult5] p1=1 & sleep1=1 -> (p1'=3) & (x1'=0) & (sleep1'=0); // multiply
// start from idle state
[p1_add1] p1=1 & sleep1=0 -> (p1'=4) & (x1'=0); // add
[p1_add4] p1=1 & sleep1=0 -> (p1'=4) & (x1'=0); // add
[p1_add6] p1=1 & sleep1=0 -> (p1'=4) & (x1'=0); // add
[p1_mult2] p1=1 & sleep1=0 -> (p1'=5) & (x1'=0); // multiply
[p1_mult3] p1=1 & sleep1=0 -> (p1'=5) & (x1'=0); // multiply
[p1_mult5] p1=1 & sleep1=0 -> (p1'=5) & (x1'=0); // multiply
// wake from sleep
[p1] p1=2 & x1=4 -> (p1'=4) & (x1'=0); // add
[p1] p1=3 & x1=4 -> (p1'=5) & (x1'=0); // multiply
// finish
[p1_done] p1=4 & x1=2 -> (1-sleep) : (p1'=1)
+ sleep : (p1'=1) & (sleep1'=1); // add
[p1_done] p1=5 & x1=3 -> (1-sleep) : (p1'=1)
+ sleep : (p1'=1) & (sleep1'=1); // multiply
endmodule
// processor 2
module P2
p2 : [0..2]; // 0 - idle, 1 - add, 2 - multiply
x2 : clock;
invariant
(p2=1 => x2<=5) &
(p2=2 => x2<=7)
endinvariant
// start
[p2_add1] p2=0 -> (p2'=1) & (x2'=0); // add
[p2_add4] p2=0 -> (p2'=1) & (x2'=0); // add
[p2_add6] p2=0 -> (p2'=1) & (x2'=0); // add
[p2_mult2] p2=0 -> (p2'=2) & (x2'=0); // multiply
[p2_mult3] p2=0 -> (p2'=2) & (x2'=0); // multiply
[p2_mult5] p2=0 -> (p2'=2) & (x2'=0); // multiply
// finish
[p2_done] p2=1 & x2=5 -> (p2'=0); // add
[p2_done] p2=2 & x2=7 -> (p2'=0); // multiply
endmodule
// reward structures
// time
rewards "time"
true : 1;
endrewards
// energy
rewards "energy"
p1=0 & sleep1=1 : 1/1000;
p1=0 & sleep1=0 : 10/1000;
p1>0 : 90/1000;
p2=0 : 20/1000;
p2>0 : 30/1000;
endrewards
label "tasks_complete" = (task1=3) & (task2=3) & (task3=3) & (task4=3) & (task5=3) & (task6=3);