You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

268 lines
8.8 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
// * Vincent Nimal <vincent.nimal@comlab.ox.ac.uk> (University of Oxford)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
package simulator.sampler;
import simulator.*;
import simulator.method.SimulationMethod;
import parser.ast.*;
import prism.PrismException;
import prism.PrismLangException;
/**
* A Sampler determines values corresponding to a path property based on a sequence of simulation paths.
* It determines the corresponding value for a single path, and also keeps track of the mean/variance
* of this value over multiple traces. A Sampler can also be connected to a SimulationMethod object,
* which is responsible for determining how many paths are required and how the final value is used.
*/
public abstract class Sampler
{
protected boolean valueKnown;
protected SimulationMethod simulationMethod;
/**
* Is the current value of the sampler known, based on the path seen so far?
*/
public boolean isCurrentValueKnown()
{
return valueKnown;
}
/**
* Does this sampler only require a bounded number of path steps?
* i.e. is it safe to keep sampling beyond the maximum path length
* even if this sampler does not know its value yet?
* Conservatively, we assume "no"; override if required.
*/
public boolean needsBoundedNumSteps()
{
return false;
}
/**
* Reset the current value of the sampler and whether it is known or not.
*/
public abstract void reset();
/**
* Reset all statistics for the sampler.
*/
public abstract void resetStats();
/**
* Update the current value of the sampler based on the current simulation path.
* It is assumed that this is called at every step of the path.
* We also need the transition list for the current (end) state of the path
* to check if there is a deadlock or self-loop.
* This returns true if the sampler's value becomes (or is already) known.
*/
public abstract boolean update(Path path, TransitionList transList) throws PrismLangException;
/**
* Update the statistics for the sampler, assuming that the current path is finished.
*/
public abstract void updateStats();
/**
* Get the current value of the sampler.
*/
public abstract Object getCurrentValue();
/**
* Get the (estimated) mean value from the sampler, over all paths seen.
*/
public abstract double getMeanValue();
/**
* Get the (estimated) variance from the sampler, over all paths seen.
*/
public abstract double getVariance();
/**
* Get the ratio of the likelihoods for the distribution followed by the samples of this sampler
* with the given parameters for hypotheses H1 and H0).
* @param p1 Probability (or expectation) for hypothesis H1
* @param p0 Probability (or expectation) for hypothesis H0
*/
public abstract double getLikelihoodRatio(double p1, double p0) throws PrismException;
/**
* Set the attached SimulationMethod object.
*/
public void setSimulationMethod(SimulationMethod simulationMethod)
{
this.simulationMethod = simulationMethod;
}
/**
* Get the attached SimulationMethod object.
*/
public SimulationMethod getSimulationMethod()
{
return simulationMethod;
}
/**
* Get an explanation of the result for the attached SimulationMethod object.
* @throws PrismException if we can't get a result for some reason.
*/
public String getSimulationMethodResultExplanation() throws PrismException
{
return simulationMethod.getResultExplanation(this);
}
// Static methods for sampler creation
/**
* Create a sampler for an expression (P=? or R=?).
* Expression should contain no constants/formula/etc.
* The model to which the property applies should also be specified.
*/
public static Sampler createSampler(Expression expr, ModulesFile mf) throws PrismException
{
Sampler sampler = null;
// P=?
if (expr instanceof ExpressionProb) {
ExpressionProb propProb = (ExpressionProb) expr;
// Test whether this is a simple path formula (i.e. non-LTL)
if (propProb.getExpression().isSimplePathFormula()) {
sampler = createSamplerForProbPathPropertySimple(propProb.getExpression(), mf);
} else {
throw new PrismException("LTL-style path formulas are not supported by the simulator");
}
}
// R=?
else if (expr instanceof ExpressionReward) {
sampler = createSamplerForRewardProperty((ExpressionReward) expr, mf);
}
// Neither
else {
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
}
return sampler;
}
private static SamplerBoolean createSamplerForProbPathPropertySimple(Expression expr, ModulesFile mf) throws PrismException
{
// Negation/parentheses
if (expr instanceof ExpressionUnaryOp) {
ExpressionUnaryOp exprUnary = (ExpressionUnaryOp) expr;
// Parentheses
if (exprUnary.getOperator() == ExpressionUnaryOp.PARENTH) {
// Recurse
return createSamplerForProbPathPropertySimple(exprUnary.getOperand(), mf);
}
// Negation
else if (exprUnary.getOperator() == ExpressionUnaryOp.NOT) {
// Recurse, then negate meaning
SamplerBoolean sampler = createSamplerForProbPathPropertySimple(exprUnary.getOperand(), mf);
sampler.negate();
return sampler;
}
}
// Temporal operators
else if (expr instanceof ExpressionTemporal) {
ExpressionTemporal exprTemp = (ExpressionTemporal) expr;
// Next
if (exprTemp.getOperator() == ExpressionTemporal.P_X) {
return new SamplerNext(exprTemp);
}
// Until
else if (exprTemp.getOperator() == ExpressionTemporal.P_U) {
if (exprTemp.hasBounds()) {
if (mf.getModelType().continuousTime()) {
// Continuous-time bounded until
return new SamplerBoundedUntilCont(exprTemp);
} else {
// Discrete-time bounded until
return new SamplerBoundedUntilDisc(exprTemp);
}
} else {
// Unbounded until
return new SamplerUntil(exprTemp);
}
}
// Anything else - convert to until and recurse
else {
return createSamplerForProbPathPropertySimple(exprTemp.convertToUntilForm(), mf);
}
}
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
}
private static SamplerDouble createSamplerForRewardProperty(ExpressionReward expr, ModulesFile mf) throws PrismException
{
// Extract reward structure index
Object rs = expr.getRewardStructIndex();
int rsi = -1;
if (mf.getNumRewardStructs() == 0)
throw new PrismException("Model has no rewards specified");
if (rs == null) {
rsi = 0;
} else if (rs instanceof Expression) {
rsi = ((Expression) rs).evaluateInt();
rs = new Integer(rsi); // for better error reporting below
rsi = (rsi < 1 || rsi > mf.getNumRewardStructs()) ? -1 : rsi - 1;
} else if (rs instanceof String) {
rsi = mf.getRewardStructIndex((String) rs);
}
if (rsi == -1)
throw new PrismException("Invalid reward structure index \"" + rs + "\"");
// Construct sampler based on type
if (!(expr.getExpression() instanceof ExpressionTemporal) ||
!(expr.isSimplePathFormula())) {
// catch co-safety reward specifications
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
}
ExpressionTemporal exprTemp = (ExpressionTemporal) expr.getExpression();
switch (exprTemp.getOperator()) {
case ExpressionTemporal.R_C:
if (mf.getModelType().continuousTime()) {
// Continuous-time cumulative reward
return new SamplerRewardCumulCont(exprTemp, rsi);
} else {
// Discrete-time cumulative reward
return new SamplerRewardCumulDisc(exprTemp, rsi);
}
case ExpressionTemporal.R_I:
if (mf.getModelType().continuousTime()) {
// Continuous-time instantaneous reward
return new SamplerRewardInstCont(exprTemp, rsi);
} else {
// Discrete-time instantaneous reward
return new SamplerRewardInstDisc(exprTemp, rsi);
}
case ExpressionTemporal.P_F:
// reachability reward
return new SamplerRewardReach(exprTemp, rsi);
}
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
}
}