You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
268 lines
8.8 KiB
268 lines
8.8 KiB
//==============================================================================
|
|
//
|
|
// Copyright (c) 2002-
|
|
// Authors:
|
|
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
|
|
// * Vincent Nimal <vincent.nimal@comlab.ox.ac.uk> (University of Oxford)
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// This file is part of PRISM.
|
|
//
|
|
// PRISM is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PRISM is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with PRISM; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
//==============================================================================
|
|
|
|
package simulator.sampler;
|
|
|
|
import simulator.*;
|
|
import simulator.method.SimulationMethod;
|
|
import parser.ast.*;
|
|
import prism.PrismException;
|
|
import prism.PrismLangException;
|
|
|
|
/**
|
|
* A Sampler determines values corresponding to a path property based on a sequence of simulation paths.
|
|
* It determines the corresponding value for a single path, and also keeps track of the mean/variance
|
|
* of this value over multiple traces. A Sampler can also be connected to a SimulationMethod object,
|
|
* which is responsible for determining how many paths are required and how the final value is used.
|
|
*/
|
|
public abstract class Sampler
|
|
{
|
|
protected boolean valueKnown;
|
|
protected SimulationMethod simulationMethod;
|
|
|
|
/**
|
|
* Is the current value of the sampler known, based on the path seen so far?
|
|
*/
|
|
public boolean isCurrentValueKnown()
|
|
{
|
|
return valueKnown;
|
|
}
|
|
|
|
/**
|
|
* Does this sampler only require a bounded number of path steps?
|
|
* i.e. is it safe to keep sampling beyond the maximum path length
|
|
* even if this sampler does not know its value yet?
|
|
* Conservatively, we assume "no"; override if required.
|
|
*/
|
|
public boolean needsBoundedNumSteps()
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Reset the current value of the sampler and whether it is known or not.
|
|
*/
|
|
public abstract void reset();
|
|
|
|
/**
|
|
* Reset all statistics for the sampler.
|
|
*/
|
|
public abstract void resetStats();
|
|
|
|
/**
|
|
* Update the current value of the sampler based on the current simulation path.
|
|
* It is assumed that this is called at every step of the path.
|
|
* We also need the transition list for the current (end) state of the path
|
|
* to check if there is a deadlock or self-loop.
|
|
* This returns true if the sampler's value becomes (or is already) known.
|
|
*/
|
|
public abstract boolean update(Path path, TransitionList transList) throws PrismLangException;
|
|
|
|
/**
|
|
* Update the statistics for the sampler, assuming that the current path is finished.
|
|
*/
|
|
public abstract void updateStats();
|
|
|
|
/**
|
|
* Get the current value of the sampler.
|
|
*/
|
|
public abstract Object getCurrentValue();
|
|
|
|
/**
|
|
* Get the (estimated) mean value from the sampler, over all paths seen.
|
|
*/
|
|
public abstract double getMeanValue();
|
|
|
|
/**
|
|
* Get the (estimated) variance from the sampler, over all paths seen.
|
|
*/
|
|
public abstract double getVariance();
|
|
|
|
/**
|
|
* Get the ratio of the likelihoods for the distribution followed by the samples of this sampler
|
|
* with the given parameters for hypotheses H1 and H0).
|
|
* @param p1 Probability (or expectation) for hypothesis H1
|
|
* @param p0 Probability (or expectation) for hypothesis H0
|
|
*/
|
|
public abstract double getLikelihoodRatio(double p1, double p0) throws PrismException;
|
|
|
|
/**
|
|
* Set the attached SimulationMethod object.
|
|
*/
|
|
public void setSimulationMethod(SimulationMethod simulationMethod)
|
|
{
|
|
this.simulationMethod = simulationMethod;
|
|
}
|
|
|
|
/**
|
|
* Get the attached SimulationMethod object.
|
|
*/
|
|
public SimulationMethod getSimulationMethod()
|
|
{
|
|
return simulationMethod;
|
|
}
|
|
|
|
/**
|
|
* Get an explanation of the result for the attached SimulationMethod object.
|
|
* @throws PrismException if we can't get a result for some reason.
|
|
*/
|
|
public String getSimulationMethodResultExplanation() throws PrismException
|
|
{
|
|
return simulationMethod.getResultExplanation(this);
|
|
}
|
|
|
|
// Static methods for sampler creation
|
|
|
|
/**
|
|
* Create a sampler for an expression (P=? or R=?).
|
|
* Expression should contain no constants/formula/etc.
|
|
* The model to which the property applies should also be specified.
|
|
*/
|
|
public static Sampler createSampler(Expression expr, ModulesFile mf) throws PrismException
|
|
{
|
|
Sampler sampler = null;
|
|
// P=?
|
|
if (expr instanceof ExpressionProb) {
|
|
ExpressionProb propProb = (ExpressionProb) expr;
|
|
// Test whether this is a simple path formula (i.e. non-LTL)
|
|
if (propProb.getExpression().isSimplePathFormula()) {
|
|
sampler = createSamplerForProbPathPropertySimple(propProb.getExpression(), mf);
|
|
} else {
|
|
throw new PrismException("LTL-style path formulas are not supported by the simulator");
|
|
}
|
|
}
|
|
// R=?
|
|
else if (expr instanceof ExpressionReward) {
|
|
sampler = createSamplerForRewardProperty((ExpressionReward) expr, mf);
|
|
}
|
|
// Neither
|
|
else {
|
|
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
|
|
}
|
|
return sampler;
|
|
}
|
|
|
|
private static SamplerBoolean createSamplerForProbPathPropertySimple(Expression expr, ModulesFile mf) throws PrismException
|
|
{
|
|
// Negation/parentheses
|
|
if (expr instanceof ExpressionUnaryOp) {
|
|
ExpressionUnaryOp exprUnary = (ExpressionUnaryOp) expr;
|
|
// Parentheses
|
|
if (exprUnary.getOperator() == ExpressionUnaryOp.PARENTH) {
|
|
// Recurse
|
|
return createSamplerForProbPathPropertySimple(exprUnary.getOperand(), mf);
|
|
}
|
|
// Negation
|
|
else if (exprUnary.getOperator() == ExpressionUnaryOp.NOT) {
|
|
// Recurse, then negate meaning
|
|
SamplerBoolean sampler = createSamplerForProbPathPropertySimple(exprUnary.getOperand(), mf);
|
|
sampler.negate();
|
|
return sampler;
|
|
}
|
|
}
|
|
// Temporal operators
|
|
else if (expr instanceof ExpressionTemporal) {
|
|
ExpressionTemporal exprTemp = (ExpressionTemporal) expr;
|
|
// Next
|
|
if (exprTemp.getOperator() == ExpressionTemporal.P_X) {
|
|
return new SamplerNext(exprTemp);
|
|
}
|
|
// Until
|
|
else if (exprTemp.getOperator() == ExpressionTemporal.P_U) {
|
|
if (exprTemp.hasBounds()) {
|
|
if (mf.getModelType().continuousTime()) {
|
|
// Continuous-time bounded until
|
|
return new SamplerBoundedUntilCont(exprTemp);
|
|
} else {
|
|
// Discrete-time bounded until
|
|
return new SamplerBoundedUntilDisc(exprTemp);
|
|
}
|
|
} else {
|
|
// Unbounded until
|
|
return new SamplerUntil(exprTemp);
|
|
}
|
|
}
|
|
// Anything else - convert to until and recurse
|
|
else {
|
|
return createSamplerForProbPathPropertySimple(exprTemp.convertToUntilForm(), mf);
|
|
}
|
|
}
|
|
|
|
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
|
|
}
|
|
|
|
private static SamplerDouble createSamplerForRewardProperty(ExpressionReward expr, ModulesFile mf) throws PrismException
|
|
{
|
|
// Extract reward structure index
|
|
Object rs = expr.getRewardStructIndex();
|
|
int rsi = -1;
|
|
if (mf.getNumRewardStructs() == 0)
|
|
throw new PrismException("Model has no rewards specified");
|
|
if (rs == null) {
|
|
rsi = 0;
|
|
} else if (rs instanceof Expression) {
|
|
rsi = ((Expression) rs).evaluateInt();
|
|
rs = new Integer(rsi); // for better error reporting below
|
|
rsi = (rsi < 1 || rsi > mf.getNumRewardStructs()) ? -1 : rsi - 1;
|
|
} else if (rs instanceof String) {
|
|
rsi = mf.getRewardStructIndex((String) rs);
|
|
}
|
|
if (rsi == -1)
|
|
throw new PrismException("Invalid reward structure index \"" + rs + "\"");
|
|
|
|
// Construct sampler based on type
|
|
if (!(expr.getExpression() instanceof ExpressionTemporal) ||
|
|
!(expr.isSimplePathFormula())) {
|
|
// catch co-safety reward specifications
|
|
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
|
|
}
|
|
ExpressionTemporal exprTemp = (ExpressionTemporal) expr.getExpression();
|
|
switch (exprTemp.getOperator()) {
|
|
case ExpressionTemporal.R_C:
|
|
if (mf.getModelType().continuousTime()) {
|
|
// Continuous-time cumulative reward
|
|
return new SamplerRewardCumulCont(exprTemp, rsi);
|
|
} else {
|
|
// Discrete-time cumulative reward
|
|
return new SamplerRewardCumulDisc(exprTemp, rsi);
|
|
}
|
|
case ExpressionTemporal.R_I:
|
|
if (mf.getModelType().continuousTime()) {
|
|
// Continuous-time instantaneous reward
|
|
return new SamplerRewardInstCont(exprTemp, rsi);
|
|
} else {
|
|
// Discrete-time instantaneous reward
|
|
return new SamplerRewardInstDisc(exprTemp, rsi);
|
|
}
|
|
case ExpressionTemporal.P_F:
|
|
// reachability reward
|
|
return new SamplerRewardReach(exprTemp, rsi);
|
|
}
|
|
|
|
throw new PrismException("Can't create sampler for property \"" + expr + "\"");
|
|
}
|
|
}
|