You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
6.6 KiB
193 lines
6.6 KiB
//==============================================================================
|
|
//
|
|
// Copyright (c) 2002-
|
|
// Authors:
|
|
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// This file is part of PRISM.
|
|
//
|
|
// PRISM is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PRISM is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with PRISM; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
//==============================================================================
|
|
|
|
package explicit;
|
|
|
|
import java.util.BitSet;
|
|
import java.util.Iterator;
|
|
import java.util.Map.Entry;
|
|
import java.util.PrimitiveIterator.OfInt;
|
|
|
|
import common.IterableStateSet;
|
|
|
|
/**
|
|
* Interface for classes that provide (read) access to an explicit-state MDP,
|
|
* gathering the generic methods, i.e., those that are independent of the
|
|
* underlying value type used for the transition probabilities.
|
|
* <br>
|
|
* This allows use of these methods e.g. in the explicit and parametric engines.
|
|
*/
|
|
public interface MDPGeneric<Value> extends NondetModel
|
|
{
|
|
/**
|
|
* Get an iterator over the transitions from choice {@code i} of state {@code s}.
|
|
*/
|
|
public Iterator<Entry<Integer, Value>> getTransitionsIterator(int s, int i);
|
|
|
|
/**
|
|
* Perform a single step of precomputation algorithm Prob0, i.e., for states i in {@code subset},
|
|
* set bit i of {@code result} iff, for all/some choices,
|
|
* there is a transition to a state in {@code u}.
|
|
* Quantification over choices is determined by {@code forall}.
|
|
* @param subset Only compute for these states
|
|
* @param u Set of states {@code u}
|
|
* @param forall For-all or there-exists (true=for-all, false=there-exists)
|
|
* @param result Store results here
|
|
*/
|
|
public default void prob0step(final BitSet subset, final BitSet u, final boolean forall, final BitSet result)
|
|
{
|
|
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
|
|
final int s = it.nextInt();
|
|
boolean b1 = forall; // there exists or for all
|
|
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
|
|
boolean b2 = someSuccessorsInSet(s, choice, u);
|
|
if (forall) {
|
|
if (!b2) {
|
|
b1 = false;
|
|
break;
|
|
}
|
|
} else {
|
|
if (b2) {
|
|
b1 = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result.set(s, b1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform a single step of precomputation algorithm Prob1A, i.e., for states i in {@code subset},
|
|
* set bit i of {@code result} iff, for all choices,
|
|
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
|
|
* @param subset Only compute for these states
|
|
* @param u Set of states {@code u}
|
|
* @param v Set of states {@code v}
|
|
* @param result Store results here
|
|
*/
|
|
public default void prob1Astep(BitSet subset, BitSet u, BitSet v, BitSet result)
|
|
{
|
|
boolean b1;
|
|
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
|
|
final int s = it.nextInt();
|
|
b1 = true;
|
|
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
|
|
if (!(successorsSafeAndCanReach(s, choice, u, v))) {
|
|
b1 = false;
|
|
break;
|
|
}
|
|
}
|
|
result.set(s, b1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform a single step of precomputation algorithm Prob1E, i.e., for states i in {@code subset},
|
|
* set bit i of {@code result} iff, for some choice,
|
|
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
|
|
* Optionally, store optimal (memoryless) strategy info for 1 states.
|
|
* @param subset Only compute for these states
|
|
* @param u Set of states {@code u}
|
|
* @param v Set of states {@code v}
|
|
* @param result Store results here
|
|
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
|
|
*/
|
|
public default void prob1Estep(BitSet subset, BitSet u, BitSet v, BitSet result, int strat[])
|
|
{
|
|
int stratCh = -1;
|
|
boolean b1;
|
|
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
|
|
final int s = it.nextInt();
|
|
b1 = false;
|
|
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
|
|
if (successorsSafeAndCanReach(s, choice, u, v)) {
|
|
b1 = true;
|
|
// If strategy generation is enabled, remember optimal choice
|
|
if (strat != null)
|
|
stratCh = choice;
|
|
break;
|
|
}
|
|
}
|
|
// If strategy generation is enabled, store optimal choice
|
|
// (only if this the first time we add the state to S^yes)
|
|
if (strat != null & b1 & !result.get(s)) {
|
|
strat[s] = stratCh;
|
|
}
|
|
// Store result
|
|
result.set(s, b1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform a single step of precomputation algorithm Prob1, i.e., for states i in {@code subset},
|
|
* set bit i of {@code result} iff, for all/some choices,
|
|
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
|
|
* Quantification over choices is determined by {@code forall}.
|
|
* @param subset Only compute for these states
|
|
* @param u Set of states {@code u}
|
|
* @param v Set of states {@code v}
|
|
* @param forall For-all or there-exists (true=for-all, false=there-exists)
|
|
* @param result Store results here
|
|
*/
|
|
public default void prob1step(BitSet subset, BitSet u, BitSet v, boolean forall, BitSet result)
|
|
{
|
|
boolean b1, b2;
|
|
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
|
|
final int s = it.nextInt();
|
|
b1 = forall; // there exists or for all
|
|
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
|
|
b2 = successorsSafeAndCanReach(s, choice, u, v);
|
|
if (forall) {
|
|
if (!b2) {
|
|
b1 = false;
|
|
break;
|
|
}
|
|
} else {
|
|
if (b2) {
|
|
b1 = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result.set(s, b1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform a single step of precomputation algorithm Prob1 for a single state/choice,
|
|
* i.e., return whether there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
|
|
* @param s State (row) index
|
|
* @param i Choice index
|
|
* @param u Set of states {@code u}
|
|
* @param v Set of states {@code v}
|
|
*/
|
|
public default boolean prob1stepSingle(int s, int i, BitSet u, BitSet v)
|
|
{
|
|
return successorsSafeAndCanReach(s, i, u, v);
|
|
}
|
|
|
|
}
|