You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

321 lines
9.9 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
// includes
#include "PrismSparse.h"
#include <math.h>
#include <util.h>
#include <cudd.h>
#include <dd.h>
#include <odd.h>
#include <dv.h>
#include "sparse.h"
#include "PrismSparseGlob.h"
#include "jnipointer.h"
//------------------------------------------------------------------------------
// solve the linear equation system Ax=b with Jacobi/JOR
JNIEXPORT jlong __jlongpointer JNICALL Java_sparse_PrismSparse_PS_1JOR
(
JNIEnv *env,
jclass cls,
jlong __jlongpointer _odd, // odd
jlong __jlongpointer rv, // row vars
jint num_rvars,
jlong __jlongpointer cv, // col vars
jint num_cvars,
jlong __jlongpointer _a, // matrix A
jlong __jlongpointer _b, // vector b (if null, assume all zero)
jlong __jlongpointer _init, // init soln
jboolean transpose, // transpose A? (i.e. solve xA=b not Ax=b?)
jboolean row_sums, // use row sums for diags instead? (strictly speaking: negative sum of non-diagonal row elements)
jdouble omega // omega (over-relaxation parameter)
)
{
// cast function parameters
ODDNode *odd = jlong_to_ODDNode(_odd); // odd
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
DdNode *a = jlong_to_DdNode(_a); // matrix A
DdNode *b = jlong_to_DdNode(_b); // vector b
DdNode *init = jlong_to_DdNode(_init); // init soln
// mtbdds
DdNode *reach, *diags, *id;
// model stats
int n;
long nnz;
// flags
bool compact_a, compact_d, compact_b;
// sparse matrix
RMSparseMatrix *rmsm;
CMSRSparseMatrix *cmsrsm;
// vectors
double *diags_vec, *b_vec, *soln, *soln2, *tmpsoln;
DistVector *diags_dist, *b_dist;
// timing stuff
long start1, start2, start3, stop;
double time_taken, time_for_setup, time_for_iters;
// misc
int i, j, l, h, iters;
double d, kb, kbt;
bool done;
// start clocks
start1 = start2 = util_cpu_time();
// get number of states
n = odd->eoff + odd->toff;
// get reachable states
reach = odd->dd;
// make local copy of a
Cudd_Ref(a);
// remove and keep diagonal entries of matrix A
id = DD_Identity(ddman, rvars, cvars, num_rvars);
Cudd_Ref(reach);
id = DD_And(ddman, id, reach);
Cudd_Ref(id);
Cudd_Ref(a);
diags = DD_Apply(ddman, APPLY_TIMES, id, a);
Cudd_Ref(id);
a = DD_ITE(ddman, id, DD_Constant(ddman, 0), a);
// build sparse matrix
PS_PrintToMainLog(env, "\nBuilding sparse matrix... ");
// if requested, try and build a "compact" version
compact_a = true;
cmsrsm = NULL;
if (compact) cmsrsm = build_cmsr_sparse_matrix(ddman, a, rvars, cvars, num_rvars, odd, transpose);
if (cmsrsm != NULL) {
nnz = cmsrsm->nnz;
kb = cmsrsm->mem;
}
// if not or if it wasn't possible, built a normal one
else {
compact_a = false;
rmsm = build_rm_sparse_matrix(ddman, a, rvars, cvars, num_rvars, odd, transpose);
nnz = rmsm->nnz;
kb = rmsm->mem;
}
// print some info
PS_PrintToMainLog(env, "[n=%d, nnz=%d%s] ", n, nnz, compact_a?", compact":"");
kbt = kb;
PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
// get vector of diags, either by extracting from mtbdd or
// by doing (negative, non-diagonal) row sums of original A matrix
PS_PrintToMainLog(env, "Creating vector for diagonals... ");
if (!row_sums) {
diags = DD_MaxAbstract(ddman, diags, cvars, num_cvars);
diags_vec = mtbdd_to_double_vector(ddman, diags, rvars, num_rvars, odd);
} else {
diags_vec = compact_a ? cmsr_negative_row_sums(cmsrsm, transpose) : rm_negative_row_sums(rmsm, transpose);
}
// if any of the diagonals are zero, set them to one - avoids division by zero errors later
// strictly speaking, such matrices shouldn't work for this iterative method
// but they do occur, e.g. for steady-state computation of a bscc, this fixes it
for (i = 0; i < n; i++) diags_vec[i] = (diags_vec[i] == 0) ? 1.0 : diags_vec[i];
// try and convert to compact form if required
compact_d = false;
if (compact) {
if (diags_dist = double_vector_to_dist(diags_vec, n)) {
compact_d = true;
free(diags_vec);
}
}
kb = (!compact_d) ? n*8.0/1024.0 : (diags_dist->num_dist*8.0+n*2.0)/1024.0;
kbt += kb;
if (!compact_d) PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
else PS_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", diags_dist->num_dist, kb);
// invert diagonal
if (!compact_d) {
for (i = 0; i < n; i++) diags_vec[i] = 1.0 / diags_vec[i];
} else {
for (i = 0; i < diags_dist->num_dist; i++) diags_dist->dist[i] = 1.0 / diags_dist->dist[i];
}
// build b vector (if present)
if (b != NULL) {
PS_PrintToMainLog(env, "Creating vector for RHS... ");
b_vec = mtbdd_to_double_vector(ddman, b, rvars, num_rvars, odd);
// try and convert to compact form if required
compact_b = false;
if (compact) {
if (b_dist = double_vector_to_dist(b_vec, n)) {
compact_b = true;
free(b_vec);
}
}
kb = (!compact_b) ? n*8.0/1024.0 : (b_dist->num_dist*8.0+n*2.0)/1024.0;
kbt += kb;
if (!compact_b) PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
else PS_PrintToMainLog(env, "[dist=%d, compact] [%.1f KB]\n", b_dist->num_dist, kb);
}
// create solution/iteration vectors
PS_PrintToMainLog(env, "Allocating iteration vectors... ");
soln = mtbdd_to_double_vector(ddman, init, rvars, num_rvars, odd);
soln2 = new double[n];
kb = n*8.0/1024.0;
kbt += 2*kb;
PS_PrintToMainLog(env, "[2 x %.1f KB]\n", kb);
// print total memory usage
PS_PrintToMainLog(env, "TOTAL: [%.1f KB]\n", kbt);
// get setup time
stop = util_cpu_time();
time_for_setup = (double)(stop - start2)/1000;
start2 = stop;
// start iterations
iters = 0;
done = false;
PS_PrintToMainLog(env, "\nStarting iterations...\n");
while (!done && iters < max_iters) {
iters++;
// PS_PrintToMainLog(env, "Iteration %d: ", iters);
// start3 = util_cpu_time();
// store local copies of stuff
double *non_zeros;
unsigned char *row_counts;
int *row_starts;
bool use_counts;
unsigned int *cols;
double *dist;
int dist_shift;
int dist_mask;
if (!compact_a) {
non_zeros = rmsm->non_zeros;
row_counts = rmsm->row_counts;
row_starts = (int *)rmsm->row_counts;
use_counts = rmsm->use_counts;
cols = rmsm->cols;
} else {
row_counts = cmsrsm->row_counts;
row_starts = (int *)cmsrsm->row_counts;
use_counts = cmsrsm->use_counts;
cols = cmsrsm->cols;
dist = cmsrsm->dist;
dist_shift = cmsrsm->dist_shift;
dist_mask = cmsrsm->dist_mask;
}
// matrix multiply
h = 0;
for (i = 0; i < n; i++) {
d = (b == NULL) ? 0.0 : ((!compact_b) ? b_vec[i] : b_dist->dist[b_dist->ptrs[i]]);
if (!use_counts) { l = row_starts[i]; h = row_starts[i+1]; }
else { l = h; h += row_counts[i]; }
// "row major" version
if (!compact_a) {
for (j = l; j < h; j++) {
d -= non_zeros[j] * soln[cols[j]];
}
// "compact msr" version
} else {
for (j = l; j < h; j++) {
d -= dist[(int)(cols[j] & dist_mask)] * soln[(int)(cols[j] >> dist_shift)];
}
}
// divide by diagonal (multiply by inverted diagonal)
if (!compact_d) d *= diags_vec[i]; else d *= diags_dist->dist[diags_dist->ptrs[i]];
// over-relaxation
if (omega != 1.0) {
d = ((1-omega) * soln[i]) + (omega * d);
}
// set vector element
soln2[i] = d;
}
// check convergence
// (note: doing outside loop means may not need to check all elements)
switch (term_crit) {
case TERM_CRIT_ABSOLUTE:
done = true;
for (i = 0; i < n; i++) {
if (fabs(soln2[i] - soln[i]) > term_crit_param) {
done = false;
break;
}
}
break;
case TERM_CRIT_RELATIVE:
done = true;
for (i = 0; i < n; i++) {
if (fabs(soln2[i] - soln[i])/soln2[i] > term_crit_param) {
done = false;
break;
}
}
break;
}
// prepare for next iteration
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
// PS_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters);
}
// stop clocks
stop = util_cpu_time();
time_for_iters = (double)(stop - start2)/1000;
time_taken = (double)(stop - start1)/1000;
// print iters/timing info
PS_PrintToMainLog(env, "\n%s: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", (omega == 1.0)?"Jacobi":"JOR", iters, time_taken, time_for_iters/iters, time_for_setup);
// free memory
Cudd_RecursiveDeref(ddman, a);
Cudd_RecursiveDeref(ddman, id);
Cudd_RecursiveDeref(ddman, diags);
if (compact_a) free_cmsr_sparse_matrix(cmsrsm); else free_rm_sparse_matrix(rmsm);
if (compact_d) free_dist_vector(diags_dist); else free(diags_vec);
if (b != NULL) if (compact_b) free_dist_vector(b_dist); else free(b_vec);
delete soln2;
// if the iterative method didn't terminate, this is an error
if (!done) { delete soln; PS_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); return 0; }
return ptr_to_jlong(soln);
}
//------------------------------------------------------------------------------