You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

202 lines
5.8 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
// includes
#include "PrismSparse.h"
#include <math.h>
#include <util.h>
#include <cudd.h>
#include <dd.h>
#include <odd.h>
#include <dv.h>
#include "sparse.h"
#include "PrismSparseGlob.h"
#include "jnipointer.h"
//------------------------------------------------------------------------------
JNIEXPORT jlong __pointer JNICALL Java_sparse_PrismSparse_PS_1ProbInstReward
(
JNIEnv *env,
jclass cls,
jlong __pointer t, // trans matrix
jlong __pointer sr, // state rewards
jlong __pointer od, // odd
jlong __pointer rv, // row vars
jint num_rvars,
jlong __pointer cv, // col vars
jint num_cvars,
jint bound // time bound
)
{
// cast function parameters
DdNode *trans = jlong_to_DdNode(t); // trans matrix
DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards
ODDNode *odd = jlong_to_ODDNode(od); // reachable states
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
// model stats
int n;
long nnz;
// flags
bool compact_tr;
// sparse matrix
RMSparseMatrix *rmsm;
CMSRSparseMatrix *cmsrsm;
// vectors
double *soln, *soln2, *tmpsoln;
// timing stuff
long start1, start2, start3, stop;
double time_taken, time_for_setup, time_for_iters;
// misc
int i, j, l, h, iters;
double d, kb, kbt;
// start clocks
start1 = start2 = util_cpu_time();
// get number of states
n = odd->eoff + odd->toff;
// build sparse matrix
PS_PrintToMainLog(env, "\nBuilding sparse matrix... ");
// if requested, try and build a "compact" version
compact_tr = true;
cmsrsm = NULL;
if (compact) cmsrsm = build_cmsr_sparse_matrix(ddman, trans, rvars, cvars, num_rvars, odd);
if (cmsrsm != NULL) {
nnz = cmsrsm->nnz;
kb = cmsrsm->mem;
}
// if not or if it wasn't possible, built a normal one
else {
compact_tr = false;
rmsm = build_rm_sparse_matrix(ddman, trans, rvars, cvars, num_rvars, odd);
nnz = rmsm->nnz;
kb = rmsm->mem;
}
// print some info
PS_PrintToMainLog(env, "[n=%d, nnz=%d%s] ", n, nnz, compact_tr?", compact":"");
kbt = kb;
PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
// create solution/iteration vectors
// (solution is initialised to the state rewards)
PS_PrintToMainLog(env, "Allocating iteration vectors... ");
soln = mtbdd_to_double_vector(ddman, state_rewards, rvars, num_rvars, odd);
soln2 = new double[n];
kb = n*8.0/1024.0;
kbt += 2*kb;
PS_PrintToMainLog(env, "[2 x %.1f KB]\n", kb);
// print total memory usage
PS_PrintToMainLog(env, "TOTAL: [%.1f KB]\n", kbt);
// get setup time
stop = util_cpu_time();
time_for_setup = (double)(stop - start2)/1000;
start2 = stop;
// start iterations
PS_PrintToMainLog(env, "\nStarting iterations...\n");
// note that we ignore max_iters as we know how any iterations _should_ be performed
for (iters = 0; iters < bound; iters++) {
// PS_PrintToMainLog(env, "iter %d\n", iters);
// start3 = util_cpu_time();
// store local copies of stuff
double *non_zeros;
unsigned char *row_counts;
int *row_starts;
bool use_counts;
unsigned int *cols;
double *dist;
int dist_shift;
int dist_mask;
if (!compact_tr) {
non_zeros = rmsm->non_zeros;
row_counts = rmsm->row_counts;
row_starts = (int *)rmsm->row_counts;
use_counts = rmsm->use_counts;
cols = rmsm->cols;
} else {
row_counts = cmsrsm->row_counts;
row_starts = (int *)cmsrsm->row_counts;
use_counts = cmsrsm->use_counts;
cols = cmsrsm->cols;
dist = cmsrsm->dist;
dist_shift = cmsrsm->dist_shift;
dist_mask = cmsrsm->dist_mask;
}
// matrix multiply
h = 0;
for (i = 0; i < n; i++) {
d = 0.0;
if (!use_counts) { l = row_starts[i]; h = row_starts[i+1]; }
else { l = h; h += row_counts[i]; }
// "row major" version
if (!compact_tr) {
for (j = l; j < h; j++) {
d += non_zeros[j] * soln[cols[j]];
}
// "compact msr" version
} else {
for (j = l; j < h; j++) {
d += dist[(int)(cols[j] & dist_mask)] * soln[(int)(cols[j] >> dist_shift)];
}
}
// set vector element
soln2[i] = d;
}
// prepare for next iteration
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
// PS_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters);
}
// stop clocks
stop = util_cpu_time();
time_for_iters = (double)(stop - start2)/1000;
time_taken = (double)(stop - start1)/1000;
// print iterations/timing info
PS_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup);
// free memory
if (compact_tr) free_cmsr_sparse_matrix(cmsrsm); else free_rm_sparse_matrix(rmsm);
delete soln2;
return ptr_to_jlong(soln);
}
//------------------------------------------------------------------------------