You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1683 lines
56 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
package explicit;
import java.util.BitSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Vector;
import parser.ast.Expression;
import prism.DRA;
import prism.Pair;
import prism.PrismComponent;
import prism.PrismDevNullLog;
import prism.PrismException;
import prism.PrismFileLog;
import prism.PrismLog;
import prism.PrismUtils;
import strat.MDStrategyArray;
import explicit.rewards.MCRewards;
import explicit.rewards.MCRewardsFromMDPRewards;
import explicit.rewards.MDPRewards;
/**
* Explicit-state model checker for Markov decision processes (MDPs).
*/
public class MDPModelChecker extends ProbModelChecker
{
/**
* Create a new MDPModelChecker, inherit basic state from parent (unless null).
*/
public MDPModelChecker(PrismComponent parent) throws PrismException
{
super(parent);
}
// Model checking functions
@Override
protected StateValues checkProbPathFormulaLTL(Model model, Expression expr, boolean qual, MinMax minMax, BitSet statesOfInterest) throws PrismException
{
LTLModelChecker mcLtl;
StateValues probsProduct, probs;
Expression ltl;
DRA<BitSet> dra;
NondetModel modelProduct;
MDPModelChecker mcProduct;
long time;
// Can't do LTL with time-bounded variants of the temporal operators
if (Expression.containsTemporalTimeBounds(expr)) {
throw new PrismException("Time-bounded operators not supported in LTL: " + expr);
}
// For LTL model checking routines
mcLtl = new LTLModelChecker(this);
// Model check maximal state formulas
Vector<BitSet> labelBS = new Vector<BitSet>();
ltl = mcLtl.checkMaximalStateFormulas(this, model, expr.deepCopy(), labelBS);
// Convert LTL formula to deterministic Rabin automaton (DRA)
// For min probabilities, need to negate the formula
// (add parentheses to allow re-parsing if required)
if (minMax.isMin()) {
ltl = Expression.Not(Expression.Parenth(ltl));
}
mainLog.println("\nBuilding deterministic Rabin automaton (for " + ltl + ")...");
time = System.currentTimeMillis();
dra = LTLModelChecker.convertLTLFormulaToDRA(ltl);
int draSize = dra.size();
mainLog.println("DRA has " + dra.size() + " states, " + dra.getNumAcceptancePairs() + " pairs.");
time = System.currentTimeMillis() - time;
mainLog.println("Time for Rabin translation: " + time / 1000.0 + " seconds.");
// If required, export DRA
if (settings.getExportPropAut()) {
mainLog.println("Exporting DRA to file \"" + settings.getExportPropAutFilename() + "\"...");
PrismLog out = new PrismFileLog(settings.getExportPropAutFilename());
out.println(dra);
out.close();
//dra.printDot(new java.io.PrintStream("dra.dot"));
}
// Build product of MDP and automaton
mainLog.println("\nConstructing MDP-DRA product...");
Pair<NondetModel, int[]> pair = mcLtl.constructProductMDP(dra, (MDP) model, labelBS, statesOfInterest);
modelProduct = pair.first;
int invMap[] = pair.second;
// Find accepting MECs + compute reachability probabilities
mainLog.println("\nFinding accepting MECs...");
BitSet acceptingMECs = mcLtl.findAcceptingECStatesForRabin(dra, modelProduct, invMap);
mainLog.println("\nComputing reachability probabilities...");
mcProduct = new MDPModelChecker(this);
mcProduct.inheritSettings(this);
probsProduct = StateValues.createFromDoubleArray(mcProduct.computeReachProbs((MDP) modelProduct, acceptingMECs, false).soln, modelProduct);
// Subtract from 1 if we're model checking a negated formula for regular Pmin
if (minMax.isMin()) {
probsProduct.timesConstant(-1.0);
probsProduct.plusConstant(1.0);
}
// Mapping probabilities in the original model
double[] probsProductDbl = probsProduct.getDoubleArray();
double[] probsDbl = new double[model.getNumStates()];
// Get the probabilities for the original model by taking the initial states
// of the product and projecting back to the states of the original model
for (int i : modelProduct.getInitialStates()) {
int s = invMap[i] / draSize;
probsDbl[s] = probsProductDbl[i];
}
probs = StateValues.createFromDoubleArray(probsDbl, model);
probsProduct.clear();
return probs;
}
// Numerical computation functions
/**
* Compute next=state probabilities.
* i.e. compute the probability of being in a state in {@code target} in the next step.
* @param mdp The MDP
* @param target Target states
* @param min Min or max probabilities (true=min, false=max)
*/
public ModelCheckerResult computeNextProbs(MDP mdp, BitSet target, boolean min) throws PrismException
{
ModelCheckerResult res = null;
int n;
double soln[], soln2[];
long timer;
timer = System.currentTimeMillis();
// Store num states
n = mdp.getNumStates();
// Create/initialise solution vector(s)
soln = Utils.bitsetToDoubleArray(target, n);
soln2 = new double[n];
// Next-step probabilities
mdp.mvMultMinMax(soln, min, soln2, null, false, null);
// Return results
res = new ModelCheckerResult();
res.soln = soln2;
res.numIters = 1;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Given a value vector x, compute the probability:
* v(s) = min/max sched [ Sum_s' P_sched(s,s')*x(s') ] for s labeled with a,
* v(s) = 0 for s not labeled with a.
*
* Clears the StateValues object x.
*
* @param tr the transition matrix
* @param a the set of states labeled with a
* @param x the value vector
* @param min compute min instead of max
*/
public double[] computeRestrictedNext(MDP mdp, BitSet a, double[] x, boolean min)
{
int n;
double soln[];
// Store num states
n = mdp.getNumStates();
// initialized to 0.0
soln = new double[n];
// Next-step probabilities multiplication
// restricted to a states
mdp.mvMultMinMax(x, min, soln, a, false, null);
return soln;
}
/**
* Compute reachability probabilities.
* i.e. compute the min/max probability of reaching a state in {@code target}.
* @param mdp The MDP
* @param target Target states
* @param min Min or max probabilities (true=min, false=max)
*/
public ModelCheckerResult computeReachProbs(MDP mdp, BitSet target, boolean min) throws PrismException
{
return computeReachProbs(mdp, null, target, min, null, null);
}
/**
* Compute until probabilities.
* i.e. compute the min/max probability of reaching a state in {@code target},
* while remaining in those in @{code remain}.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param min Min or max probabilities (true=min, false=max)
*/
public ModelCheckerResult computeUntilProbs(MDP mdp, BitSet remain, BitSet target, boolean min) throws PrismException
{
return computeReachProbs(mdp, remain, target, min, null, null);
}
/**
* Compute reachability/until probabilities.
* i.e. compute the min/max probability of reaching a state in {@code target},
* while remaining in those in @{code remain}.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param min Min or max probabilities (true=min, false=max)
* @param init Optionally, an initial solution vector (may be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values).
* Also, 'known' values cannot be passed for some solution methods, e.g. policy iteration.
*/
public ModelCheckerResult computeReachProbs(MDP mdp, BitSet remain, BitSet target, boolean min, double init[], BitSet known) throws PrismException
{
ModelCheckerResult res = null;
BitSet targetOrig, no, yes;
int i, n, numYes, numNo;
long timer, timerProb0, timerProb1;
int strat[] = null;
// Local copy of setting
MDPSolnMethod mdpSolnMethod = this.mdpSolnMethod;
// Switch to a supported method, if necessary
if (mdpSolnMethod == MDPSolnMethod.LINEAR_PROGRAMMING) {
mdpSolnMethod = MDPSolnMethod.GAUSS_SEIDEL;
mainLog.printWarning("Switching to MDP solution method \"" + mdpSolnMethod.fullName() + "\"");
}
// Check for some unsupported combinations
if (mdpSolnMethod == MDPSolnMethod.VALUE_ITERATION && valIterDir == ValIterDir.ABOVE) {
if (!(precomp && prob0))
throw new PrismException("Precomputation (Prob0) must be enabled for value iteration from above");
if (!min)
throw new PrismException("Value iteration from above only works for minimum probabilities");
}
if (mdpSolnMethod == MDPSolnMethod.POLICY_ITERATION || mdpSolnMethod == MDPSolnMethod.MODIFIED_POLICY_ITERATION) {
if (known != null) {
throw new PrismException("Policy iteration methods cannot be passed 'known' values for some states");
}
}
// Start probabilistic reachability
timer = System.currentTimeMillis();
mainLog.println("\nStarting probabilistic reachability (" + (min ? "min" : "max") + ")...");
// Check for deadlocks in non-target state (because breaks e.g. prob1)
mdp.checkForDeadlocks(target);
// Store num states
n = mdp.getNumStates();
// Optimise by enlarging target set (if more info is available)
targetOrig = target;
if (init != null && known != null) {
target = new BitSet(n);
for (i = 0; i < n; i++) {
target.set(i, targetOrig.get(i) || (known.get(i) && init[i] == 1.0));
}
}
// If required, create/initialise strategy storage
// Set choices to -1, denoting unknown
// (except for target states, which are -2, denoting arbitrary)
if (genStrat || exportAdv) {
strat = new int[n];
for (i = 0; i < n; i++) {
strat[i] = target.get(i) ? -2 : -1;
}
}
// Precomputation
timerProb0 = System.currentTimeMillis();
if (precomp && prob0) {
no = prob0(mdp, remain, target, min, strat);
} else {
no = new BitSet();
}
timerProb0 = System.currentTimeMillis() - timerProb0;
timerProb1 = System.currentTimeMillis();
if (precomp && prob1) {
yes = prob1(mdp, remain, target, min, strat);
} else {
yes = (BitSet) target.clone();
}
timerProb1 = System.currentTimeMillis() - timerProb1;
// Print results of precomputation
numYes = yes.cardinality();
numNo = no.cardinality();
mainLog.println("target=" + target.cardinality() + ", yes=" + numYes + ", no=" + numNo + ", maybe=" + (n - (numYes + numNo)));
// If still required, store strategy for no/yes (0/1) states.
// This is just for the cases max=0 and min=1, where arbitrary choices suffice (denoted by -2)
if (genStrat || exportAdv) {
if (min) {
for (i = yes.nextSetBit(0); i >= 0; i = yes.nextSetBit(i + 1)) {
if (!target.get(i))
strat[i] = -2;
}
} else {
for (i = no.nextSetBit(0); i >= 0; i = no.nextSetBit(i + 1)) {
strat[i] = -2;
}
}
}
// Compute probabilities (if needed)
if (numYes + numNo < n) {
switch (mdpSolnMethod) {
case VALUE_ITERATION:
res = computeReachProbsValIter(mdp, no, yes, min, init, known, strat);
break;
case GAUSS_SEIDEL:
res = computeReachProbsGaussSeidel(mdp, no, yes, min, init, known, strat);
break;
case POLICY_ITERATION:
res = computeReachProbsPolIter(mdp, no, yes, min, strat);
break;
case MODIFIED_POLICY_ITERATION:
res = computeReachProbsModPolIter(mdp, no, yes, min, strat);
break;
default:
throw new PrismException("Unknown MDP solution method " + mdpSolnMethod.fullName());
}
} else {
res = new ModelCheckerResult();
res.soln = Utils.bitsetToDoubleArray(yes, n);
}
// Finished probabilistic reachability
timer = System.currentTimeMillis() - timer;
mainLog.println("Probabilistic reachability took " + timer / 1000.0 + " seconds.");
// Store strategy
if (genStrat) {
res.strat = new MDStrategyArray(mdp, strat);
}
// Export adversary
if (exportAdv) {
// Prune strategy
restrictStrategyToReachableStates(mdp, strat);
// Print strategy
mainLog.print("Strat:");
for (i = 0; i < n; i++) {
mainLog.print(" " + i + ":" + strat[i]);
}
mainLog.println();
// Export
PrismLog out = new PrismFileLog(exportAdvFilename);
new DTMCFromMDPMemorylessAdversary(mdp, strat).exportToPrismExplicitTra(out);
out.close();
}
// Update time taken
res.timeTaken = timer / 1000.0;
res.timeProb0 = timerProb0 / 1000.0;
res.timePre = (timerProb0 + timerProb1) / 1000.0;
return res;
}
/**
* Prob0 precomputation algorithm.
* i.e. determine the states of an MDP which, with min/max probability 0,
* reach a state in {@code target}, while remaining in those in @{code remain}.
* {@code min}=true gives Prob0E, {@code min}=false gives Prob0A.
* Optionally, for min only, store optimal (memoryless) strategy info for 0 states.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param min Min or max probabilities (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public BitSet prob0(MDP mdp, BitSet remain, BitSet target, boolean min, int strat[])
{
int n, iters;
BitSet u, soln, unknown;
boolean u_done;
long timer;
// Start precomputation
timer = System.currentTimeMillis();
mainLog.println("Starting Prob0 (" + (min ? "min" : "max") + ")...");
// Special case: no target states
if (target.cardinality() == 0) {
soln = new BitSet(mdp.getNumStates());
soln.set(0, mdp.getNumStates());
return soln;
}
// Initialise vectors
n = mdp.getNumStates();
u = new BitSet(n);
soln = new BitSet(n);
// Determine set of states actually need to perform computation for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
if (remain != null)
unknown.and(remain);
// Fixed point loop
iters = 0;
u_done = false;
// Least fixed point - should start from 0 but we optimise by
// starting from 'target', thus bypassing first iteration
u.or(target);
soln.or(target);
while (!u_done) {
iters++;
// Single step of Prob0
mdp.prob0step(unknown, u, min, soln);
// Check termination
u_done = soln.equals(u);
// u = soln
u.clear();
u.or(soln);
}
// Negate
u.flip(0, n);
// Finished precomputation
timer = System.currentTimeMillis() - timer;
mainLog.print("Prob0 (" + (min ? "min" : "max") + ")");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// If required, generate strategy. This is for min probs,
// so it can be done *after* the main prob0 algorithm (unlike for prob1).
// We simply pick, for all "no" states, the first choice for which all transitions stay in "no"
if (strat != null) {
for (int i = u.nextSetBit(0); i >= 0; i = u.nextSetBit(i + 1)) {
int numChoices = mdp.getNumChoices(i);
for (int k = 0; k < numChoices; k++) {
if (mdp.allSuccessorsInSet(i, k, u)) {
strat[i] = k;
continue;
}
}
}
}
return u;
}
/**
* Prob1 precomputation algorithm.
* i.e. determine the states of an MDP which, with min/max probability 1,
* reach a state in {@code target}, while remaining in those in @{code remain}.
* {@code min}=true gives Prob1A, {@code min}=false gives Prob1E.
* Optionally, for max only, store optimal (memoryless) strategy info for 1 states.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param min Min or max probabilities (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public BitSet prob1(MDP mdp, BitSet remain, BitSet target, boolean min, int strat[])
{
int n, iters;
BitSet u, v, soln, unknown;
boolean u_done, v_done;
long timer;
// Start precomputation
timer = System.currentTimeMillis();
mainLog.println("Starting Prob1 (" + (min ? "min" : "max") + ")...");
// Special case: no target states
if (target.cardinality() == 0) {
return new BitSet(mdp.getNumStates());
}
// Initialise vectors
n = mdp.getNumStates();
u = new BitSet(n);
v = new BitSet(n);
soln = new BitSet(n);
// Determine set of states actually need to perform computation for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
if (remain != null)
unknown.and(remain);
// Nested fixed point loop
iters = 0;
u_done = false;
// Greatest fixed point
u.set(0, n);
while (!u_done) {
v_done = false;
// Least fixed point - should start from 0 but we optimise by
// starting from 'target', thus bypassing first iteration
v.clear();
v.or(target);
soln.clear();
soln.or(target);
while (!v_done) {
iters++;
// Single step of Prob1
if (min)
mdp.prob1Astep(unknown, u, v, soln);
else
mdp.prob1Estep(unknown, u, v, soln, null);
// Check termination (inner)
v_done = soln.equals(v);
// v = soln
v.clear();
v.or(soln);
}
// Check termination (outer)
u_done = v.equals(u);
// u = v
u.clear();
u.or(v);
}
// If we need to generate a strategy, do another iteration of the inner loop for this
// We could do this during the main double fixed point above, but we would generate surplus
// strategy info for non-1 states during early iterations of the outer loop,
// which are not straightforward to remove since this method does not know which states
// already have valid strategy info from Prob0.
// Notice that we only need to look at states in u (since we already know the answer),
// so we restrict 'unknown' further
unknown.and(u);
if (!min && strat != null) {
v_done = false;
v.clear();
v.or(target);
soln.clear();
soln.or(target);
while (!v_done) {
mdp.prob1Estep(unknown, u, v, soln, strat);
v_done = soln.equals(v);
v.clear();
v.or(soln);
}
u_done = v.equals(u);
}
// Finished precomputation
timer = System.currentTimeMillis() - timer;
mainLog.print("Prob1 (" + (min ? "min" : "max") + ")");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
return u;
}
/**
* Compute reachability probabilities using value iteration.
* Optionally, store optimal (memoryless) strategy info.
* @param mdp The MDP
* @param no Probability 0 states
* @param yes Probability 1 states
* @param min Min or max probabilities (true=min, false=max)
* @param init Optionally, an initial solution vector (will be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
protected ModelCheckerResult computeReachProbsValIter(MDP mdp, BitSet no, BitSet yes, boolean min, double init[], BitSet known, int strat[])
throws PrismException
{
ModelCheckerResult res;
BitSet unknown;
int i, n, iters;
double soln[], soln2[], tmpsoln[], initVal;
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting value iteration (" + (min ? "min" : "max") + ")...");
// Store num states
n = mdp.getNumStates();
// Create solution vector(s)
soln = new double[n];
soln2 = (init == null) ? new double[n] : init;
// Initialise solution vectors. Use (where available) the following in order of preference:
// (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal
// where initVal is 0.0 or 1.0, depending on whether we converge from below/above.
initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0;
if (init != null) {
if (known != null) {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
}
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal;
}
// Determine set of states actually need to compute values for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(yes);
unknown.andNot(no);
if (known != null)
unknown.andNot(known);
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
iters++;
// Matrix-vector multiply and min/max ops
mdp.mvMultMinMax(soln, min, soln2, unknown, false, strat);
// Check termination
done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished value iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Value iteration (" + (min ? "min" : "max") + ")");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error (usually)
if (!done && errorOnNonConverge) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute reachability probabilities using Gauss-Seidel (including Jacobi-style updates).
* @param mdp The MDP
* @param no Probability 0 states
* @param yes Probability 1 states
* @param min Min or max probabilities (true=min, false=max)
* @param init Optionally, an initial solution vector (will be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
protected ModelCheckerResult computeReachProbsGaussSeidel(MDP mdp, BitSet no, BitSet yes, boolean min, double init[], BitSet known, int strat[])
throws PrismException
{
ModelCheckerResult res;
BitSet unknown;
int i, n, iters;
double soln[], initVal, maxDiff;
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting Gauss-Seidel (" + (min ? "min" : "max") + ")...");
// Store num states
n = mdp.getNumStates();
// Create solution vector
soln = (init == null) ? new double[n] : init;
// Initialise solution vector. Use (where available) the following in order of preference:
// (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal
// where initVal is 0.0 or 1.0, depending on whether we converge from below/above.
initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0;
if (init != null) {
if (known != null) {
for (i = 0; i < n; i++)
soln[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
}
} else {
for (i = 0; i < n; i++)
soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal;
}
// Determine set of states actually need to compute values for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(yes);
unknown.andNot(no);
if (known != null)
unknown.andNot(known);
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
iters++;
// Matrix-vector multiply
maxDiff = mdp.mvMultGSMinMax(soln, min, unknown, false, termCrit == TermCrit.ABSOLUTE, strat);
// Check termination
done = maxDiff < termCritParam;
}
// Finished Gauss-Seidel
timer = System.currentTimeMillis() - timer;
mainLog.print("Gauss-Seidel");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error (usually)
if (!done && errorOnNonConverge) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute reachability probabilities using policy iteration.
* Optionally, store optimal (memoryless) strategy info.
* @param mdp: The MDP
* @param no: Probability 0 states
* @param yes: Probability 1 states
* @param min: Min or max probabilities (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
protected ModelCheckerResult computeReachProbsPolIter(MDP mdp, BitSet no, BitSet yes, boolean min, int strat[]) throws PrismException
{
ModelCheckerResult res;
int i, n, iters, totalIters;
double soln[], soln2[];
boolean done;
long timer;
DTMCModelChecker mcDTMC;
DTMC dtmc;
// Re-use solution to solve each new policy (strategy)?
boolean reUseSoln = true;
// Start policy iteration
timer = System.currentTimeMillis();
mainLog.println("Starting policy iteration (" + (min ? "min" : "max") + ")...");
// Create a DTMC model checker (for solving policies)
mcDTMC = new DTMCModelChecker(this);
mcDTMC.inheritSettings(this);
mcDTMC.setLog(new PrismDevNullLog());
// Store num states
n = mdp.getNumStates();
// Create solution vectors
soln = new double[n];
soln2 = new double[n];
// Initialise solution vectors.
for (i = 0; i < n; i++)
soln[i] = soln2[i] = yes.get(i) ? 1.0 : 0.0;
// If not passed in, create new storage for strategy and initialise
// Initial strategy just picks first choice (0) everywhere
if (strat == null) {
strat = new int[n];
for (i = 0; i < n; i++)
strat[i] = 0;
}
// Otherwise, just initialise for states not in yes/no
// (Optimal choices for yes/no should already be known)
else {
for (i = 0; i < n; i++)
if (!(no.get(i) || yes.get(i)))
strat[i] = 0;
}
// Start iterations
iters = totalIters = 0;
done = false;
while (!done) {
iters++;
// Solve induced DTMC for strategy
dtmc = new DTMCFromMDPMemorylessAdversary(mdp, strat);
res = mcDTMC.computeReachProbsGaussSeidel(dtmc, no, yes, reUseSoln ? soln : null, null);
soln = res.soln;
totalIters += res.numIters;
// Check if optimal, improve non-optimal choices
mdp.mvMultMinMax(soln, min, soln2, null, false, null);
done = true;
for (i = 0; i < n; i++) {
// Don't look at no/yes states - we may not have strategy info for them,
// so they might appear non-optimal
if (no.get(i) || yes.get(i))
continue;
if (!PrismUtils.doublesAreClose(soln[i], soln2[i], termCritParam, termCrit == TermCrit.ABSOLUTE)) {
done = false;
List<Integer> opt = mdp.mvMultMinMaxSingleChoices(i, soln, min, soln2[i]);
// Only update strategy if strictly better
if (!opt.contains(strat[i]))
strat[i] = opt.get(0);
}
}
}
// Finished policy iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Policy iteration");
mainLog.println(" took " + iters + " cycles (" + totalIters + " iterations in total) and " + timer / 1000.0 + " seconds.");
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = totalIters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute reachability probabilities using modified policy iteration.
* @param mdp: The MDP
* @param no: Probability 0 states
* @param yes: Probability 1 states
* @param min: Min or max probabilities (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
protected ModelCheckerResult computeReachProbsModPolIter(MDP mdp, BitSet no, BitSet yes, boolean min, int strat[]) throws PrismException
{
ModelCheckerResult res;
int i, n, iters, totalIters;
double soln[], soln2[];
boolean done;
long timer;
DTMCModelChecker mcDTMC;
DTMC dtmc;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting modified policy iteration (" + (min ? "min" : "max") + ")...");
// Create a DTMC model checker (for solving policies)
mcDTMC = new DTMCModelChecker(this);
mcDTMC.inheritSettings(this);
mcDTMC.setLog(new PrismDevNullLog());
// Limit iters for DTMC solution - this implements "modified" policy iteration
mcDTMC.setMaxIters(100);
mcDTMC.setErrorOnNonConverge(false);
// Store num states
n = mdp.getNumStates();
// Create solution vectors
soln = new double[n];
soln2 = new double[n];
// Initialise solution vectors.
for (i = 0; i < n; i++)
soln[i] = soln2[i] = yes.get(i) ? 1.0 : 0.0;
// If not passed in, create new storage for strategy and initialise
// Initial strategy just picks first choice (0) everywhere
if (strat == null) {
strat = new int[n];
for (i = 0; i < n; i++)
strat[i] = 0;
}
// Otherwise, just initialise for states not in yes/no
// (Optimal choices for yes/no should already be known)
else {
for (i = 0; i < n; i++)
if (!(no.get(i) || yes.get(i)))
strat[i] = 0;
}
// Start iterations
iters = totalIters = 0;
done = false;
while (!done) {
iters++;
// Solve induced DTMC for strategy
dtmc = new DTMCFromMDPMemorylessAdversary(mdp, strat);
res = mcDTMC.computeReachProbsGaussSeidel(dtmc, no, yes, soln, null);
soln = res.soln;
totalIters += res.numIters;
// Check if optimal, improve non-optimal choices
mdp.mvMultMinMax(soln, min, soln2, null, false, null);
done = true;
for (i = 0; i < n; i++) {
// Don't look at no/yes states - we don't store strategy info for them,
// so they might appear non-optimal
if (no.get(i) || yes.get(i))
continue;
if (!PrismUtils.doublesAreClose(soln[i], soln2[i], termCritParam, termCrit == TermCrit.ABSOLUTE)) {
done = false;
List<Integer> opt = mdp.mvMultMinMaxSingleChoices(i, soln, min, soln2[i]);
strat[i] = opt.get(0);
}
}
}
// Finished policy iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Modified policy iteration");
mainLog.println(" took " + iters + " cycles (" + totalIters + " iterations in total) and " + timer / 1000.0 + " seconds.");
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = totalIters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Construct strategy information for min/max reachability probabilities.
* (More precisely, list of indices of choices resulting in min/max.)
* (Note: indices are guaranteed to be sorted in ascending order.)
* @param mdp The MDP
* @param state The state to generate strategy info for
* @param target The set of target states to reach
* @param min Min or max probabilities (true=min, false=max)
* @param lastSoln Vector of values from which to recompute in one iteration
*/
public List<Integer> probReachStrategy(MDP mdp, int state, BitSet target, boolean min, double lastSoln[]) throws PrismException
{
double val = mdp.mvMultMinMaxSingle(state, lastSoln, min, null);
return mdp.mvMultMinMaxSingleChoices(state, lastSoln, min, val);
}
/**
* Compute bounded reachability probabilities.
* i.e. compute the min/max probability of reaching a state in {@code target} within k steps.
* @param mdp The MDP
* @param target Target states
* @param k Bound
* @param min Min or max probabilities (true=min, false=max)
*/
public ModelCheckerResult computeBoundedReachProbs(MDP mdp, BitSet target, int k, boolean min) throws PrismException
{
return computeBoundedReachProbs(mdp, null, target, k, min, null, null);
}
/**
* Compute bounded until probabilities.
* i.e. compute the min/max probability of reaching a state in {@code target},
* within k steps, and while remaining in states in @{code remain}.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param k Bound
* @param min Min or max probabilities (true=min, false=max)
*/
public ModelCheckerResult computeBoundedUntilProbs(MDP mdp, BitSet remain, BitSet target, int k, boolean min) throws PrismException
{
return computeBoundedReachProbs(mdp, remain, target, k, min, null, null);
}
/**
* Compute bounded reachability/until probabilities.
* i.e. compute the min/max probability of reaching a state in {@code target},
* within k steps, and while remaining in states in @{code remain}.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param k Bound
* @param min Min or max probabilities (true=min, false=max)
* @param init Optionally, an initial solution vector (may be overwritten)
* @param results Optional array of size k+1 to store (init state) results for each step (null if unused)
*/
public ModelCheckerResult computeBoundedReachProbs(MDP mdp, BitSet remain, BitSet target, int k, boolean min, double init[], double results[])
throws PrismException
{
ModelCheckerResult res = null;
BitSet unknown;
int i, n, iters;
double soln[], soln2[], tmpsoln[];
long timer;
// Start bounded probabilistic reachability
timer = System.currentTimeMillis();
mainLog.println("\nStarting bounded probabilistic reachability (" + (min ? "min" : "max") + ")...");
// Store num states
n = mdp.getNumStates();
// Create solution vector(s)
soln = new double[n];
soln2 = (init == null) ? new double[n] : init;
// Initialise solution vectors. Use passed in initial vector, if present
if (init != null) {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0;
}
// Store intermediate results if required
// (compute min/max value over initial states for first step)
if (results != null) {
// TODO: whether this is min or max should be specified somehow
results[0] = Utils.minMaxOverArraySubset(soln2, mdp.getInitialStates(), true);
}
// Determine set of states actually need to perform computation for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
if (remain != null)
unknown.and(remain);
// Start iterations
iters = 0;
while (iters < k) {
iters++;
// Matrix-vector multiply and min/max ops
mdp.mvMultMinMax(soln, min, soln2, unknown, false, null);
// Store intermediate results if required
// (compute min/max value over initial states for this step)
if (results != null) {
// TODO: whether this is min or max should be specified somehow
results[iters] = Utils.minMaxOverArraySubset(soln2, mdp.getInitialStates(), true);
}
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished bounded probabilistic reachability
timer = System.currentTimeMillis() - timer;
mainLog.print("Bounded probabilistic reachability (" + (min ? "min" : "max") + ")");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.lastSoln = soln2;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
res.timePre = 0.0;
return res;
}
/**
* Compute expected cumulative (step-bounded) rewards.
* i.e. compute the min/max reward accumulated within {@code k} steps.
* @param mdp The MDP
* @param mdpRewards The rewards
* @param target Target states
* @param min Min or max rewards (true=min, false=max)
*/
public ModelCheckerResult computeCumulativeRewards(MDP mdp, MDPRewards mdpRewards, int k, boolean min) throws PrismException
{
ModelCheckerResult res = null;
int i, n, iters;
long timer;
double soln[], soln2[], tmpsoln[];
// Start expected cumulative reward
timer = System.currentTimeMillis();
mainLog.println("\nStarting expected cumulative reward (" + (min ? "min" : "max") + ")...");
// Store num states
n = mdp.getNumStates();
// Create/initialise solution vector(s)
soln = new double[n];
soln2 = new double[n];
for (i = 0; i < n; i++)
soln[i] = soln2[i] = 0.0;
// Start iterations
iters = 0;
while (iters < k) {
iters++;
// Matrix-vector multiply and min/max ops
int strat[] = new int[n];
mdp.mvMultRewMinMax(soln, mdpRewards, min, soln2, null, false, strat);
mainLog.println(strat);
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished value iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Expected cumulative reward (" + (min ? "min" : "max") + ")");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute expected reachability rewards.
* @param mdp The MDP
* @param mdpRewards The rewards
* @param target Target states
* @param min Min or max rewards (true=min, false=max)
*/
public ModelCheckerResult computeReachRewards(MDP mdp, MDPRewards mdpRewards, BitSet target, boolean min) throws PrismException
{
return computeReachRewards(mdp, mdpRewards, target, min, null, null);
}
/**
* Compute expected reachability rewards.
* i.e. compute the min/max reward accumulated to reach a state in {@code target}.
* @param mdp The MDP
* @param mdpRewards The rewards
* @param target Target states
* @param min Min or max rewards (true=min, false=max)
* @param init Optionally, an initial solution vector (may be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values).
* Also, 'known' values cannot be passed for some solution methods, e.g. policy iteration.
*/
public ModelCheckerResult computeReachRewards(MDP mdp, MDPRewards mdpRewards, BitSet target, boolean min, double init[], BitSet known)
throws PrismException
{
ModelCheckerResult res = null;
BitSet inf;
int i, n, numTarget, numInf;
long timer, timerProb1;
int strat[] = null;
// Local copy of setting
MDPSolnMethod mdpSolnMethod = this.mdpSolnMethod;
// Switch to a supported method, if necessary
if (!(mdpSolnMethod == MDPSolnMethod.VALUE_ITERATION || mdpSolnMethod == MDPSolnMethod.GAUSS_SEIDEL || mdpSolnMethod == MDPSolnMethod.POLICY_ITERATION)) {
mdpSolnMethod = MDPSolnMethod.GAUSS_SEIDEL;
mainLog.printWarning("Switching to MDP solution method \"" + mdpSolnMethod.fullName() + "\"");
}
// Check for some unsupported combinations
if (mdpSolnMethod == MDPSolnMethod.POLICY_ITERATION) {
if (known != null) {
throw new PrismException("Policy iteration methods cannot be passed 'known' values for some states");
}
}
// Start expected reachability
timer = System.currentTimeMillis();
mainLog.println("\nStarting expected reachability (" + (min ? "min" : "max") + ")...");
// Check for deadlocks in non-target state (because breaks e.g. prob1)
mdp.checkForDeadlocks(target);
// Store num states
n = mdp.getNumStates();
// Optimise by enlarging target set (if more info is available)
if (init != null && known != null) {
BitSet targetNew = new BitSet(n);
for (i = 0; i < n; i++) {
targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 0.0));
}
target = targetNew;
}
// If required, create/initialise strategy storage
// Set choices to -1, denoting unknown
// (except for target states, which are -2, denoting arbitrary)
if (genStrat || exportAdv || mdpSolnMethod == MDPSolnMethod.POLICY_ITERATION) {
strat = new int[n];
for (i = 0; i < n; i++) {
strat[i] = target.get(i) ? -2 : -1;
}
}
// Precomputation (not optional)
timerProb1 = System.currentTimeMillis();
inf = prob1(mdp, null, target, !min, strat);
inf.flip(0, n);
timerProb1 = System.currentTimeMillis() - timerProb1;
// Print results of precomputation
numTarget = target.cardinality();
numInf = inf.cardinality();
mainLog.println("target=" + numTarget + ", inf=" + numInf + ", rest=" + (n - (numTarget + numInf)));
// If required, generate strategy for "inf" states.
if (genStrat || exportAdv || mdpSolnMethod == MDPSolnMethod.POLICY_ITERATION) {
if (min) {
// If min reward is infinite, all choices give infinity
// So the choice can be arbitrary, denoted by -2;
for (i = inf.nextSetBit(0); i >= 0; i = inf.nextSetBit(i + 1)) {
strat[i] = -2;
}
} else {
// If max reward is infinite, there is at least one choice giving infinity.
// So we pick, for all "inf" states, the first choice for which some transitions stays in "inf".
for (i = inf.nextSetBit(0); i >= 0; i = inf.nextSetBit(i + 1)) {
int numChoices = mdp.getNumChoices(i);
for (int k = 0; k < numChoices; k++) {
if (mdp.allSuccessorsInSet(i, k, inf)) {
strat[i] = k;
continue;
}
}
}
}
}
// Compute rewards
switch (mdpSolnMethod) {
case VALUE_ITERATION:
res = computeReachRewardsValIter(mdp, mdpRewards, target, inf, min, init, known, strat);
break;
case GAUSS_SEIDEL:
res = computeReachRewardsGaussSeidel(mdp, mdpRewards, target, inf, min, init, known, strat);
break;
case POLICY_ITERATION:
res = computeReachRewardsPolIter(mdp, mdpRewards, target, inf, min, strat);
break;
default:
throw new PrismException("Unknown MDP solution method " + mdpSolnMethod.fullName());
}
// Store strategy
if (genStrat) {
res.strat = new MDStrategyArray(mdp, strat);
}
// Export adversary
if (exportAdv) {
// Prune strategy
restrictStrategyToReachableStates(mdp, strat);
// Print strategy
mainLog.print("Strat:");
for (i = 0; i < n; i++) {
mainLog.print(" " + i + ":" + strat[i]);
}
mainLog.println();
// Export
PrismLog out = new PrismFileLog(exportAdvFilename);
new DTMCFromMDPMemorylessAdversary(mdp, strat).exportToPrismExplicitTra(out);
out.close();
}
// Finished expected reachability
timer = System.currentTimeMillis() - timer;
mainLog.println("Expected reachability took " + timer / 1000.0 + " seconds.");
// Update time taken
res.timeTaken = timer / 1000.0;
res.timePre = timerProb1 / 1000.0;
return res;
}
/**
* Compute expected reachability rewards using value iteration.
* Optionally, store optimal (memoryless) strategy info.
* @param mdp The MDP
* @param mdpRewards The rewards
* @param target Target states
* @param inf States for which reward is infinite
* @param min Min or max rewards (true=min, false=max)
* @param init Optionally, an initial solution vector (will be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
protected ModelCheckerResult computeReachRewardsValIter(MDP mdp, MDPRewards mdpRewards, BitSet target, BitSet inf, boolean min, double init[], BitSet known, int strat[])
throws PrismException
{
ModelCheckerResult res;
BitSet unknown;
int i, n, iters;
double soln[], soln2[], tmpsoln[];
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting value iteration (" + (min ? "min" : "max") + ")...");
// Store num states
n = mdp.getNumStates();
// Create solution vector(s)
soln = new double[n];
soln2 = (init == null) ? new double[n] : init;
// Initialise solution vectors. Use (where available) the following in order of preference:
// (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0
if (init != null) {
if (known != null) {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
}
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0;
}
// Determine set of states actually need to compute values for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
unknown.andNot(inf);
if (known != null)
unknown.andNot(known);
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
//mainLog.println(soln);
iters++;
// Matrix-vector multiply and min/max ops
mdp.mvMultRewMinMax(soln, mdpRewards, min, soln2, unknown, false, strat);
// Check termination
done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished value iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Value iteration (" + (min ? "min" : "max") + ")");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error (usually)
if (!done && errorOnNonConverge) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute expected reachability rewards using Gauss-Seidel (including Jacobi-style updates).
* Optionally, store optimal (memoryless) strategy info.
* @param mdp The MDP
* @param mdpRewards The rewards
* @param target Target states
* @param inf States for which reward is infinite
* @param min Min or max rewards (true=min, false=max)
* @param init Optionally, an initial solution vector (will be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
protected ModelCheckerResult computeReachRewardsGaussSeidel(MDP mdp, MDPRewards mdpRewards, BitSet target, BitSet inf, boolean min, double init[],
BitSet known, int strat[]) throws PrismException
{
ModelCheckerResult res;
BitSet unknown;
int i, n, iters;
double soln[], maxDiff;
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting Gauss-Seidel (" + (min ? "min" : "max") + ")...");
// Store num states
n = mdp.getNumStates();
// Create solution vector(s)
soln = (init == null) ? new double[n] : init;
// Initialise solution vector. Use (where available) the following in order of preference:
// (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0
if (init != null) {
if (known != null) {
for (i = 0; i < n; i++)
soln[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
}
} else {
for (i = 0; i < n; i++)
soln[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0;
}
// Determine set of states actually need to compute values for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
unknown.andNot(inf);
if (known != null)
unknown.andNot(known);
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
//mainLog.println(soln);
iters++;
// Matrix-vector multiply and min/max ops
maxDiff = mdp.mvMultRewGSMinMax(soln, mdpRewards, min, unknown, false, termCrit == TermCrit.ABSOLUTE, strat);
// Check termination
done = maxDiff < termCritParam;
}
// Finished Gauss-Seidel
timer = System.currentTimeMillis() - timer;
mainLog.print("Gauss-Seidel (" + (min ? "min" : "max") + ")");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error (usually)
if (!done && errorOnNonConverge) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute expected reachability rewards using policy iteration.
* The array {@code strat} is used both to pass in the initial strategy for policy iteration,
* and as storage for the resulting optimal strategy (if needed).
* Passing in an initial strategy is required when some states have infinite reward,
* to avoid the possibility of policy iteration getting stuck on an infinite-value strategy.
* @param mdp The MDP
* @param mdpRewards The rewards
* @param target Target states
* @param inf States for which reward is infinite
* @param min Min or max rewards (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
protected ModelCheckerResult computeReachRewardsPolIter(MDP mdp, MDPRewards mdpRewards, BitSet target, BitSet inf, boolean min, int strat[])
throws PrismException
{
ModelCheckerResult res;
int i, n, iters, totalIters;
double soln[], soln2[];
boolean done;
long timer;
DTMCModelChecker mcDTMC;
DTMC dtmc;
MCRewards mcRewards;
// Re-use solution to solve each new policy (strategy)?
boolean reUseSoln = true;
// Start policy iteration
timer = System.currentTimeMillis();
mainLog.println("Starting policy iteration (" + (min ? "min" : "max") + ")...");
// Create a DTMC model checker (for solving policies)
mcDTMC = new DTMCModelChecker(this);
mcDTMC.inheritSettings(this);
mcDTMC.setLog(new PrismDevNullLog());
// Store num states
n = mdp.getNumStates();
// Create solution vector(s)
soln = new double[n];
soln2 = new double[n];
// Initialise solution vectors.
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0;
// If not passed in, create new storage for strategy and initialise
// Initial strategy just picks first choice (0) everywhere
if (strat == null) {
strat = new int[n];
for (i = 0; i < n; i++)
strat[i] = 0;
}
// Start iterations
iters = totalIters = 0;
done = false;
while (!done && iters < maxIters) {
iters++;
// Solve induced DTMC for strategy
dtmc = new DTMCFromMDPMemorylessAdversary(mdp, strat);
mcRewards = new MCRewardsFromMDPRewards(mdpRewards, strat);
res = mcDTMC.computeReachRewardsValIter(dtmc, mcRewards, target, inf, reUseSoln ? soln : null, null);
soln = res.soln;
totalIters += res.numIters;
// Check if optimal, improve non-optimal choices
mdp.mvMultRewMinMax(soln, mdpRewards, min, soln2, null, false, null);
done = true;
for (i = 0; i < n; i++) {
// Don't look at target/inf states - we may not have strategy info for them,
// so they might appear non-optimal
if (target.get(i) || inf.get(i))
continue;
if (!PrismUtils.doublesAreClose(soln[i], soln2[i], termCritParam, termCrit == TermCrit.ABSOLUTE)) {
done = false;
List<Integer> opt = mdp.mvMultRewMinMaxSingleChoices(i, soln, mdpRewards, min, soln2[i]);
// Only update strategy if strictly better
if (!opt.contains(strat[i]))
strat[i] = opt.get(0);
}
}
}
// Finished policy iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Policy iteration");
mainLog.println(" took " + iters + " cycles (" + totalIters + " iterations in total) and " + timer / 1000.0 + " seconds.");
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = totalIters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Construct strategy information for min/max expected reachability.
* (More precisely, list of indices of choices resulting in min/max.)
* (Note: indices are guaranteed to be sorted in ascending order.)
* @param mdp The MDP
* @param mdpRewards The rewards
* @param state The state to generate strategy info for
* @param target The set of target states to reach
* @param min Min or max rewards (true=min, false=max)
* @param lastSoln Vector of values from which to recompute in one iteration
*/
public List<Integer> expReachStrategy(MDP mdp, MDPRewards mdpRewards, int state, BitSet target, boolean min, double lastSoln[]) throws PrismException
{
double val = mdp.mvMultRewMinMaxSingle(state, lastSoln, mdpRewards, min, null);
return mdp.mvMultRewMinMaxSingleChoices(state, lastSoln, mdpRewards, min, val);
}
/**
* Restrict a (memoryless) strategy for an MDP, stored as an integer array of choice indices,
* to the states of the MDP that are reachable under that strategy.
* @param mdp The MDP
* @param strat The strategy
*/
public void restrictStrategyToReachableStates(MDP mdp, int strat[])
{
BitSet restrict = new BitSet();
BitSet explore = new BitSet();
// Get initial states
for (int is : mdp.getInitialStates()) {
restrict.set(is);
explore.set(is);
}
// Compute reachable states (store in 'restrict')
boolean foundMore = true;
while (foundMore) {
foundMore = false;
for (int s = explore.nextSetBit(0); s >= 0; s = explore.nextSetBit(s + 1)) {
explore.set(s, false);
if (strat[s] >= 0) {
Iterator<Map.Entry<Integer, Double>> iter = mdp.getTransitionsIterator(s, strat[s]);
while (iter.hasNext()) {
Map.Entry<Integer, Double> e = iter.next();
int dest = e.getKey();
if (!restrict.get(dest)) {
foundMore = true;
restrict.set(dest);
explore.set(dest);
}
}
}
}
}
// Set strategy choice for non-reachable state to -1
int n = mdp.getNumStates();
for (int s = restrict.nextClearBit(0); s < n; s = restrict.nextClearBit(s + 1)) {
strat[s] = -3;
}
}
/**
* Simple test program.
*/
public static void main(String args[])
{
MDPModelChecker mc;
MDPSimple mdp;
ModelCheckerResult res;
BitSet init, target;
Map<String, BitSet> labels;
boolean min = true;
try {
mc = new MDPModelChecker(null);
mdp = new MDPSimple();
mdp.buildFromPrismExplicit(args[0]);
//System.out.println(mdp);
labels = mc.loadLabelsFile(args[1]);
//System.out.println(labels);
init = labels.get("init");
target = labels.get(args[2]);
if (target == null)
throw new PrismException("Unknown label \"" + args[2] + "\"");
for (int i = 3; i < args.length; i++) {
if (args[i].equals("-min"))
min = true;
else if (args[i].equals("-max"))
min = false;
else if (args[i].equals("-nopre"))
mc.setPrecomp(false);
}
res = mc.computeReachProbs(mdp, target, min);
System.out.println(res.soln[init.nextSetBit(0)]);
} catch (PrismException e) {
System.out.println(e);
}
}
}