You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

319 lines
10 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
// includes
#include "PrismSparse.h"
#include <math.h>
#include <util.h>
#include <cudd.h>
#include <dd.h>
#include <odd.h>
#include <dv.h>
#include "sparse.h"
#include "PrismSparseGlob.h"
#include "jnipointer.h"
//------------------------------------------------------------------------------
JNIEXPORT jlong __jlongpointer JNICALL Java_sparse_PrismSparse_PS_1NondetReachReward
(
JNIEnv *env,
jclass cls,
jlong __jlongpointer t, // trans matrix
jlong __jlongpointer sr, // state rewards
jlong __jlongpointer trr, // transition rewards
jlong __jlongpointer od, // odd
jlong __jlongpointer rv, // row vars
jint num_rvars,
jlong __jlongpointer cv, // col vars
jint num_cvars,
jlong __jlongpointer ndv, // nondet vars
jint num_ndvars,
jlong __jlongpointer g, // 'goal' states
jlong __jlongpointer in, // 'inf' states
jlong __jlongpointer m, // 'maybe' states
jboolean min // min or max probabilities (true = min, false = max)
)
{
// cast function parameters
DdNode *trans = jlong_to_DdNode(t); // trans matrix
DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards
DdNode *trans_rewards = jlong_to_DdNode(trr); // transition rewards
ODDNode *odd = jlong_to_ODDNode(od); // reachable states
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
DdNode **ndvars = jlong_to_DdNode_array(ndv); // nondet vars
DdNode *goal = jlong_to_DdNode(g); // 'goal' states
DdNode *inf = jlong_to_DdNode(in); // 'inf' states
DdNode *maybe = jlong_to_DdNode(m); // 'maybe' states
// mtbdds
DdNode *a;
// model stats
int n, nc, nc_r;
long nnz, nnz_r;
// sparse matrix
NDSparseMatrix *ndsm, *ndsm_r;
// vectors
double *sr_vec, *soln, *soln2, *tmpsoln, *inf_vec;
// timing stuff
long start1, start2, start3, stop;
double time_taken, time_for_setup, time_for_iters;
// adversary stuff
bool adv = true, adv_loop = false;
FILE *fp_adv = NULL;
int adv_l, adv_h;
// misc
int i, j, k, k_r, l1, h1, l2, h2, l2_r, h2_r, iters;
double d1, d2, kb, kbt;
bool done, first;
// start clocks
start1 = start2 = util_cpu_time();
// get number of states
n = odd->eoff + odd->toff;
// filter out rows (goal states and infinity states) from matrix
Cudd_Ref(trans);
Cudd_Ref(maybe);
a = DD_Apply(ddman, APPLY_TIMES, trans, maybe);
// also remove goal and infinity states from state rewards vector
Cudd_Ref(state_rewards);
Cudd_Ref(maybe);
state_rewards = DD_Apply(ddman, APPLY_TIMES, state_rewards, maybe);
// and from transition rewards matrix
Cudd_Ref(trans_rewards);
Cudd_Ref(maybe);
trans_rewards = DD_Apply(ddman, APPLY_TIMES, trans_rewards, maybe);
// build sparse matrix (probs)
PS_PrintToMainLog(env, "\nBuilding sparse matrix (transitions)... ");
ndsm = build_nd_sparse_matrix(ddman, a, rvars, cvars, num_rvars, ndvars, num_ndvars, odd);
// get number of transitions/choices
nnz = ndsm->nnz;
nc = ndsm->nc;
// print out info
PS_PrintToMainLog(env, "[n=%d, nc=%d, nnz=%d, k=%d] ", n, nc, nnz, ndsm->k);
kb = (nnz*12.0+nc*4.0+n*4.0)/1024.0;
kbt = kb;
PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
// build sparse matrix (rewards)
PS_PrintToMainLog(env, "Building sparse matrix (transition rewards)... ");
ndsm_r = build_sub_nd_sparse_matrix(ddman, a, trans_rewards, rvars, cvars, num_rvars, ndvars, num_ndvars, odd);
// get number of transitions/choices
nnz_r = ndsm_r->nnz;
nc_r = ndsm_r->nc;
// print out info
PS_PrintToMainLog(env, "[n=%d, nc=%d, nnz=%d, k=%d] ", n, nc_r, nnz_r, ndsm_r->k);
kb = (nnz_r*12.0+nc_r*4.0+n*4.0)/1024.0;
kbt += kb;
PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
// get vector for state rewards
PS_PrintToMainLog(env, "Creating vector for state rewards... ");
sr_vec = mtbdd_to_double_vector(ddman, state_rewards, rvars, num_rvars, odd);
kb = n*8.0/1024.0;
kbt += kb;
PS_PrintToMainLog(env, "[%.1f KB]\n", kb);
// create solution/iteration vectors
PS_PrintToMainLog(env, "Allocating iteration vectors... ");
soln = new double[n];
soln2 = new double[n];
kb = n*8.0/1024.0;
kbt += 2*kb;
PS_PrintToMainLog(env, "[2 x %.1f KB]\n", kb);
// print total memory usage
PS_PrintToMainLog(env, "TOTAL: [%.1f KB]\n", kbt);
// initial solution is zero
for (i = 0; i < n; i++) {
soln[i] = 0;
}
// get setup time
stop = util_cpu_time();
time_for_setup = (double)(stop - start2)/1000;
start2 = stop;
// start iterations
iters = 0;
done = false;
PS_PrintToMainLog(env, "\nStarting iterations...\n");
// open file to store adversary (if required)
if (adv) {
fp_adv = fopen("adv.tra", "w");
fprintf(fp_adv, "%d ?\n", n);
}
while ((!done && iters < max_iters) || adv_loop) {
iters++;
// PS_PrintToMainLog(env, "iter %d\n", iters);
// start3 = util_cpu_time();
// store local copies of stuff
// firstly for transition matrix
double *non_zeros = ndsm->non_zeros;
unsigned char *row_counts = ndsm->row_counts;
int *row_starts = (int *)ndsm->row_counts;
unsigned char *choice_counts = ndsm->choice_counts;
int *choice_starts = (int *)ndsm->choice_counts;
bool use_counts = ndsm->use_counts;
unsigned int *cols = ndsm->cols;
// and then for transition rewards matrix
// (note: we don't need row_counts/row_starts for
// this since choice structure mirrors transition matrix)
double *non_zeros_r = ndsm_r->non_zeros;
unsigned char *choice_counts_r = ndsm_r->choice_counts;
int *choice_starts_r = (int *)ndsm_r->choice_counts;
bool use_counts_r = ndsm_r->use_counts;
unsigned int *cols_r = ndsm_r->cols;
// do matrix multiplication and min/max
h1 = h2 = h2_r = 0;
// loop through states
for (i = 0; i < n; i++) {
d1 = 0.0;
first = true;
// get pointers to nondeterministic choices for state i
if (!use_counts) { l1 = row_starts[i]; h1 = row_starts[i+1]; }
else { l1 = h1; h1 += row_counts[i]; }
// loop through those choices
for (j = l1; j < h1; j++) {
// compute the reward value for state i for this iteration
// start with state reward for this state
d2 = sr_vec[i];
// get pointers to transitions
if (!use_counts) { l2 = choice_starts[j]; h2 = choice_starts[j+1]; }
else { l2 = h2; h2 += choice_counts[j]; }
// and get pointers to transition rewards
if (!use_counts_r) { l2_r = choice_starts_r[j]; h2_r = choice_starts_r[j+1]; }
else { l2_r = h2_r; h2_r += choice_counts_r[j]; }
// loop through transitions
for (k = l2; k < h2; k++) {
// find corresponding transition reward if any
k_r = l2_r; while (k_r < h2_r && cols_r[k_r] != cols[k]) k_r++;
// if there is one, add reward * prob to reward value
if (k_r < h2_r) { d2 += non_zeros_r[k_r] * non_zeros[k]; k_r++; }
// add prob * corresponding reward from previous iteration
d2 += non_zeros[k] * soln[cols[k]];
}
// see if this value is the min/max so far
if (first || min&&(d2<d1) || !min&&(d2>d1)) {
d1 = d2;
if (adv_loop) { adv_l = l2; adv_h = h2; }
}
first = false;
}
// set vector element
// (if there were no choices from this state, reward is zero)
soln2[i] = (h1 > l1) ? d1 : 0;
// store adversary info (if required)
if (adv_loop) if (h1 > l1)
for (k = adv_l; k < adv_h; k++) fprintf(fp_adv, "%d %d %g\n", i, cols[k], non_zeros[k]);
}
// check convergence
// (note: doing outside loop means may not need to check all elements)
switch (term_crit) {
case TERM_CRIT_ABSOLUTE:
done = true;
for (i = 0; i < n; i++) {
if (fabs(soln2[i] - soln[i]) > term_crit_param) {
done = false;
break;
}
}
break;
case TERM_CRIT_RELATIVE:
done = true;
for (i = 0; i < n; i++) {
if (fabs(soln2[i] - soln[i])/soln2[i] > term_crit_param) {
done = false;
break;
}
}
break;
}
// prepare for next iteration
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
// if we're done, but adversary generation is required, go round once more
if (done && adv) adv_loop = !adv_loop;
// PS_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters);
}
// stop clocks
stop = util_cpu_time();
time_for_iters = (double)(stop - start2)/1000;
time_taken = (double)(stop - start1)/1000;
// print iterations/timing info
PS_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup);
// set reward for infinity states to infinity
if (soln != NULL) {
// first, generate vector for inf
inf_vec = mtbdd_to_double_vector(ddman, inf, rvars, num_rvars, odd);
// go thru setting elements of soln to infinity
for (i = 0; i < n; i++) if (inf_vec[i] > 0) soln[i] = HUGE_VAL;
}
// close file to store adversary (if required)
if (adv) {
fclose(fp_adv);
}
// free memory
Cudd_RecursiveDeref(ddman, a);
Cudd_RecursiveDeref(ddman, state_rewards);
Cudd_RecursiveDeref(ddman, trans_rewards);
free_nd_sparse_matrix(ndsm);
free_nd_sparse_matrix(ndsm_r);
delete sr_vec;
delete soln2;
// if the iterative method didn't terminate, this is an error
if (!done) { delete soln; PS_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); return 0; }
return ptr_to_jlong(soln);
}
//------------------------------------------------------------------------------