You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
469 lines
15 KiB
469 lines
15 KiB
//==============================================================================
|
|
//
|
|
// Copyright (c) 2002-
|
|
// Authors:
|
|
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford, formerly University of Birmingham)
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// This file is part of PRISM.
|
|
//
|
|
// PRISM is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PRISM is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with PRISM; if not, write to the Free Software Foundation,
|
|
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
//==============================================================================
|
|
|
|
// includes
|
|
#include "PrismHybrid.h"
|
|
#include <math.h>
|
|
#include <util.h>
|
|
#include <cudd.h>
|
|
#include <dd.h>
|
|
#include <odd.h>
|
|
#include <dv.h>
|
|
#include "sparse.h"
|
|
#include "hybrid.h"
|
|
#include "PrismHybridGlob.h"
|
|
#include "jnipointer.h"
|
|
#include "prism.h"
|
|
#include <new>
|
|
|
|
// local prototypes
|
|
static void mult_rec(HDDNode *hdd, int level, int row_offset, int col_offset, int code);
|
|
static void mult_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset, int code);
|
|
static void mult_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset, int code);
|
|
|
|
// globals (used by local functions)
|
|
static HDDNode *zero;
|
|
static int num_levels;
|
|
static bool compact_sm;
|
|
static double *sm_dist;
|
|
static int sm_dist_shift;
|
|
static int sm_dist_mask;
|
|
static double *soln = NULL, *soln2 = NULL, *soln3 = NULL;
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
JNIEXPORT jlong __jlongpointer JNICALL Java_hybrid_PrismHybrid_PH_1NondetReachReward
|
|
(
|
|
JNIEnv *env,
|
|
jclass cls,
|
|
jlong __jlongpointer t, // trans matrix
|
|
jlong __jlongpointer sr, // state rewards
|
|
jlong __jlongpointer trr, // transition rewards
|
|
jlong __jlongpointer od, // odd
|
|
jlong __jlongpointer rv, // row vars
|
|
jint num_rvars,
|
|
jlong __jlongpointer cv, // col vars
|
|
jint num_cvars,
|
|
jlong __jlongpointer ndv, // nondet vars
|
|
jint num_ndvars,
|
|
jlong __jlongpointer g, // 'goal' states
|
|
jlong __jlongpointer in, // 'inf' states
|
|
jlong __jlongpointer m, // 'maybe' states
|
|
jboolean min // min or max probabilities (true = min, false = max)
|
|
)
|
|
{
|
|
// cast function parameters
|
|
DdNode *trans = jlong_to_DdNode(t); // trans matrix
|
|
DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards
|
|
DdNode *trans_rewards = jlong_to_DdNode(trr); // transition rewards
|
|
ODDNode *odd = jlong_to_ODDNode(od); // reachable states
|
|
DdNode **rvars = jlong_to_DdNode_array(rv); // row vars
|
|
DdNode **cvars = jlong_to_DdNode_array(cv); // col vars
|
|
DdNode **ndvars = jlong_to_DdNode_array(ndv); // nondet vars
|
|
DdNode *goal = jlong_to_DdNode(g); // 'goal' states
|
|
DdNode *inf = jlong_to_DdNode(in); // 'inf' states
|
|
DdNode *maybe = jlong_to_DdNode(m); // 'maybe' states
|
|
|
|
// mtbdds
|
|
DdNode *reach = NULL, *a = NULL;
|
|
// model stats
|
|
int n, nm;
|
|
// flags
|
|
bool compact_r;
|
|
// hybrid stuff
|
|
HDDMatrices *hddms = NULL, *hddms2 = NULL;
|
|
HDDMatrix *hddm = NULL;
|
|
HDDNode *hdd = NULL;
|
|
// vectors
|
|
double *rew_vec = NULL, *tmpsoln = NULL;
|
|
DistVector *rew_dist = NULL;
|
|
// timing stuff
|
|
long start1, start2, start3, stop;
|
|
double time_taken, time_for_setup, time_for_iters;
|
|
// misc
|
|
int i, j, k, iters;
|
|
double d, x, sup_norm, kb, kbt;
|
|
bool done;
|
|
|
|
// exception handling around whole function
|
|
try {
|
|
|
|
// start clocks
|
|
start1 = start2 = util_cpu_time();
|
|
|
|
// get number of states
|
|
n = odd->eoff + odd->toff;
|
|
|
|
// get reachable states
|
|
reach = odd->dd;
|
|
|
|
// filter out rows (goal states and infinity states) from matrix
|
|
Cudd_Ref(trans);
|
|
Cudd_Ref(maybe);
|
|
a = DD_Apply(ddman, APPLY_TIMES, trans, maybe);
|
|
|
|
// build hdds for matrix
|
|
PH_PrintToMainLog(env, "\nBuilding hybrid MTBDD matrices... ");
|
|
hddms = build_hdd_matrices_mdp(a, NULL, rvars, cvars, num_rvars, ndvars, num_ndvars, odd);
|
|
nm = hddms->nm;
|
|
kb = hddms->mem_nodes;
|
|
kbt = kb;
|
|
PH_PrintToMainLog(env, "[nm=%d, levels=%d, nodes=%d] ", hddms->nm, hddms->num_levels, hddms->num_nodes);
|
|
PH_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// add sparse bits
|
|
PH_PrintToMainLog(env, "Adding sparse bits... ");
|
|
add_sparse_matrices_mdp(hddms, compact);
|
|
kb = hddms->mem_sm;
|
|
kbt += kb;
|
|
PH_PrintToMainLog(env, "[levels=%d-%d, num=%d, compact=%d/%d] ", hddms->l_sm_min, hddms->l_sm_max, hddms->num_sm, hddms->compact_sm, hddms->nm);
|
|
PH_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// multiply transition rewards by transition probs and sum rows
|
|
// (note also filters out unwanted states at the same time)
|
|
Cudd_Ref(trans_rewards);
|
|
Cudd_Ref(a);
|
|
trans_rewards = DD_Apply(ddman, APPLY_TIMES, trans_rewards, a);
|
|
trans_rewards = DD_SumAbstract(ddman, trans_rewards, cvars, num_cvars);
|
|
trans_rewards = DD_Apply(ddman, APPLY_TIMES, trans_rewards, DD_SetVectorElement(ddman, DD_Constant(ddman, 0), cvars, num_cvars, 0, 1));
|
|
|
|
// build hdds for transition rewards matrix
|
|
PH_PrintToMainLog(env, "Building hybrid MTBDD matrices for rewards... ");
|
|
hddms2 = build_hdd_matrices_mdp(trans_rewards, hddms, rvars, cvars, num_rvars, ndvars, num_ndvars, odd);
|
|
kb = hddms2->mem_nodes;
|
|
kbt = kb;
|
|
PH_PrintToMainLog(env, "[nm=%d, levels=%d, nodes=%d] ", hddms2->nm, hddms2->num_levels, hddms2->num_nodes);
|
|
PH_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// add sparse bits
|
|
PH_PrintToMainLog(env, "Adding sparse bits... ");
|
|
add_sparse_matrices_mdp(hddms2, compact);
|
|
kb = hddms2->mem_sm;
|
|
kbt += kb;
|
|
PH_PrintToMainLog(env, "[levels=%d-%d, num=%d, compact=%d/%d] ", hddms2->l_sm_min, hddms2->l_sm_max, hddms2->num_sm, hddms2->compact_sm, hddms2->nm);
|
|
PH_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// remove goal and infinity states from state rewards vector
|
|
Cudd_Ref(state_rewards);
|
|
Cudd_Ref(maybe);
|
|
state_rewards = DD_Apply(ddman, APPLY_TIMES, state_rewards, maybe);
|
|
|
|
// put state rewards in a vector
|
|
PH_PrintToMainLog(env, "Creating rewards vector... ");
|
|
rew_vec = mtbdd_to_double_vector(ddman, state_rewards, rvars, num_rvars, odd);
|
|
// try and convert to compact form if required
|
|
compact_r = false;
|
|
if (compact) {
|
|
if ((rew_dist = double_vector_to_dist(rew_vec, n))) {
|
|
compact_r = true;
|
|
delete rew_vec; rew_vec = NULL;
|
|
}
|
|
}
|
|
kb = (!compact_r) ? n*8.0/1024.0 : (rew_dist->num_dist*8.0+n*2.0)/1024.0;
|
|
kbt += kb;
|
|
if (compact_r) PH_PrintToMainLog(env, "[dist=%d, compact] ", rew_dist->num_dist);
|
|
PH_PrintMemoryToMainLog(env, "[", kb, "]\n");
|
|
|
|
// create solution/iteration vectors
|
|
PH_PrintToMainLog(env, "Allocating iteration vectors... ");
|
|
soln = new double[n];
|
|
soln2 = new double[n];
|
|
soln3 = new double[n];
|
|
kb = n*8.0/1024.0;
|
|
kbt += 3*kb;
|
|
PH_PrintMemoryToMainLog(env, "[3 x ", kb, "]\n");
|
|
|
|
// print total memory usage
|
|
PH_PrintMemoryToMainLog(env, "TOTAL: [", kbt, "]\n");
|
|
|
|
// initial solution is zero
|
|
for (i = 0; i < n; i++) {
|
|
soln[i] = 0;
|
|
}
|
|
|
|
// get setup time
|
|
stop = util_cpu_time();
|
|
time_for_setup = (double)(stop - start2)/1000;
|
|
start2 = stop;
|
|
start3 = stop;
|
|
|
|
// start iterations
|
|
iters = 0;
|
|
done = false;
|
|
PH_PrintToMainLog(env, "\nStarting iterations...\n");
|
|
|
|
while (!done && iters < max_iters) {
|
|
|
|
iters++;
|
|
|
|
// initialise array for storing mins/maxs to -1s
|
|
// (allows us to keep track of rows not visited)
|
|
for (i = 0; i < n; i++) {
|
|
soln2[i] = -1;
|
|
}
|
|
|
|
// do matrix multiplication and min/max
|
|
for (i = 0; i < nm; i++) {
|
|
|
|
// start off all negative
|
|
// (need to keep track of rows not visited)
|
|
for (j = 0; j < n; j++) {
|
|
soln3[j] = -1;
|
|
}
|
|
|
|
// matrix multiply
|
|
// store stuff to be used globally
|
|
hddm = hddms->choices[i];
|
|
hdd = hddm->top;
|
|
zero = hddm->zero;
|
|
num_levels = hddm->num_levels;
|
|
compact_sm = hddm->compact_sm;
|
|
if (compact_sm) {
|
|
sm_dist = hddm->dist;
|
|
sm_dist_shift = hddm->dist_shift;
|
|
sm_dist_mask = hddm->dist_mask;
|
|
}
|
|
// do traversal
|
|
mult_rec(hdd, 0, 0, 0, 1);
|
|
|
|
// add transition rewards
|
|
// store stuff to be used globally
|
|
hddm = hddms2->choices[i];
|
|
hdd = hddm->top;
|
|
zero = hddm->zero;
|
|
num_levels = hddm->num_levels;
|
|
compact_sm = hddm->compact_sm;
|
|
if (compact_sm) {
|
|
sm_dist = hddm->dist;
|
|
sm_dist_shift = hddm->dist_shift;
|
|
sm_dist_mask = hddm->dist_mask;
|
|
}
|
|
// do traversal
|
|
mult_rec(hdd, 0, 0, 0, 2);
|
|
|
|
// min/max
|
|
for (j = 0; j < n; j++) {
|
|
if (soln3[j] >= 0) {
|
|
if (soln2[j] < 0) {
|
|
soln2[j] = soln3[j];
|
|
} else if (min) {
|
|
if (soln3[j] < soln2[j]) soln2[j] = soln3[j];
|
|
} else {
|
|
if (soln3[j] > soln2[j]) soln2[j] = soln3[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// add state rewards
|
|
if (!compact_r) {
|
|
for (i = 0; i < n; i++) { if(soln2[i] < 0) soln2[i] = 0; soln2[i] += rew_vec[i]; }
|
|
} else {
|
|
for (i = 0; i < n; i++) { if(soln2[i] < 0) soln2[i] = 0; soln2[i] += rew_dist->dist[rew_dist->ptrs[i]]; }
|
|
}
|
|
|
|
// check convergence
|
|
sup_norm = 0.0;
|
|
for (i = 0; i < n; i++) {
|
|
x = fabs(soln2[i] - soln[i]);
|
|
if (term_crit == TERM_CRIT_RELATIVE) {
|
|
x /= soln2[i];
|
|
}
|
|
if (x > sup_norm) sup_norm = x;
|
|
}
|
|
if (sup_norm < term_crit_param) {
|
|
done = true;
|
|
}
|
|
|
|
// print occasional status update
|
|
if ((util_cpu_time() - start3) > UPDATE_DELAY) {
|
|
PH_PrintToMainLog(env, "Iteration %d: max %sdiff=%f", iters, (term_crit == TERM_CRIT_RELATIVE)?"relative ":"", sup_norm);
|
|
PH_PrintToMainLog(env, ", %.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000));
|
|
start3 = util_cpu_time();
|
|
}
|
|
|
|
// prepare for next iteration
|
|
tmpsoln = soln;
|
|
soln = soln2;
|
|
soln2 = tmpsoln;
|
|
}
|
|
|
|
// stop clocks
|
|
stop = util_cpu_time();
|
|
time_for_iters = (double)(stop - start2)/1000;
|
|
time_taken = (double)(stop - start1)/1000;
|
|
|
|
// print iterations/timing info
|
|
PH_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup);
|
|
|
|
// if the iterative method didn't terminate, this is an error
|
|
if (!done) { delete soln; soln = NULL; PH_SetErrorMessage("Iterative method did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); }
|
|
|
|
// catch exceptions: register error, free memory
|
|
} catch (std::bad_alloc e) {
|
|
PH_SetErrorMessage("Out of memory");
|
|
if (soln) delete[] soln;
|
|
soln = 0;
|
|
}
|
|
|
|
// free memory
|
|
if (a) Cudd_RecursiveDeref(ddman, a);
|
|
if (state_rewards) Cudd_RecursiveDeref(ddman, state_rewards);
|
|
if (trans_rewards) Cudd_RecursiveDeref(ddman, trans_rewards);
|
|
if (hddms) delete hddms;
|
|
if (hddms2) delete hddms2;
|
|
if (rew_vec) delete[] rew_vec;
|
|
if (rew_dist) delete rew_dist;
|
|
if (soln2) delete soln2;
|
|
if (soln3) delete soln3;
|
|
|
|
return ptr_to_jlong(soln);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
static void mult_rec(HDDNode *hdd, int level, int row_offset, int col_offset, int code)
|
|
{
|
|
HDDNode *e, *t;
|
|
|
|
// if it's the zero node
|
|
if (hdd == zero) {
|
|
return;
|
|
}
|
|
// or if we've reached a submatrix
|
|
// (check for non-null ptr but, equivalently, we could just check if level==l_sm)
|
|
else if (hdd->sm.ptr) {
|
|
if (!compact_sm) {
|
|
mult_rm((RMSparseMatrix *)hdd->sm.ptr, row_offset, col_offset, code);
|
|
} else {
|
|
mult_cmsr((CMSRSparseMatrix *)hdd->sm.ptr, row_offset, col_offset, code);
|
|
}
|
|
return;
|
|
}
|
|
// or if we've reached the bottom
|
|
else if (level == num_levels) {
|
|
//printf("(%d,%d)=%f\n", row_offset, col_offset, hdd->type.val);
|
|
switch (code) {
|
|
case 1:
|
|
if (soln3[row_offset] < 0) soln3[row_offset] = 0;
|
|
soln3[row_offset] += soln[col_offset] * hdd->type.val;
|
|
break;
|
|
case 2:
|
|
if (soln3[row_offset] < 0) soln3[row_offset] = 0;
|
|
soln3[row_offset] += hdd->type.val;
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
// otherwise recurse
|
|
e = hdd->type.kids.e;
|
|
if (e != zero) {
|
|
mult_rec(e->type.kids.e, level+1, row_offset, col_offset, code);
|
|
mult_rec(e->type.kids.t, level+1, row_offset, col_offset+e->off.val, code);
|
|
}
|
|
t = hdd->type.kids.t;
|
|
if (t != zero) {
|
|
mult_rec(t->type.kids.e, level+1, row_offset+hdd->off.val, col_offset, code);
|
|
mult_rec(t->type.kids.t, level+1, row_offset+hdd->off.val, col_offset+t->off.val, code);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------------
|
|
|
|
static void mult_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset, int code)
|
|
{
|
|
int i2, j2, l2, h2, r;
|
|
int sm_n = rmsm->n;
|
|
int sm_nnz = rmsm->nnz;
|
|
double *sm_non_zeros = rmsm->non_zeros;
|
|
unsigned char *sm_row_counts = rmsm->row_counts;
|
|
int *sm_row_starts = (int *)rmsm->row_counts;
|
|
bool sm_use_counts = rmsm->use_counts;
|
|
unsigned int *sm_cols = rmsm->cols;
|
|
|
|
// loop through rows of submatrix
|
|
l2 = sm_nnz; h2 = 0;
|
|
for (i2 = 0; i2 < sm_n; i2++) {
|
|
|
|
// loop through entries in this row
|
|
if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; }
|
|
else { l2 = h2; h2 += sm_row_counts[i2]; }
|
|
for (j2 = l2; j2 < h2; j2++) {
|
|
switch (code) {
|
|
case 1:
|
|
r = row_offset + i2;
|
|
if (soln3[r] < 0) soln3[r] = 0;
|
|
soln3[r] += soln[col_offset + sm_cols[j2]] * sm_non_zeros[j2];
|
|
break;
|
|
case 2:
|
|
r = row_offset + i2;
|
|
if (soln3[r] < 0) soln3[r] = 0;
|
|
soln3[r] += sm_non_zeros[j2];
|
|
break;
|
|
}
|
|
//printf("(%d,%d)=%f\n", row_offset + i2, col_offset + sm_cols[j2], sm_non_zeros[j2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------------
|
|
|
|
static void mult_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset, int code)
|
|
{
|
|
int i2, j2, l2, h2, r;
|
|
int sm_n = cmsrsm->n;
|
|
int sm_nnz = cmsrsm->nnz;
|
|
unsigned char *sm_row_counts = cmsrsm->row_counts;
|
|
int *sm_row_starts = (int *)cmsrsm->row_counts;
|
|
bool sm_use_counts = cmsrsm->use_counts;
|
|
unsigned int *sm_cols = cmsrsm->cols;
|
|
|
|
// loop through rows of submatrix
|
|
l2 = sm_nnz; h2 = 0;
|
|
for (i2 = 0; i2 < sm_n; i2++) {
|
|
|
|
// loop through entries in this row
|
|
if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; }
|
|
else { l2 = h2; h2 += sm_row_counts[i2]; }
|
|
for (j2 = l2; j2 < h2; j2++) {
|
|
switch (code) {
|
|
case 1:
|
|
r = row_offset + i2;
|
|
if (soln3[r] < 0) soln3[r] = 0;
|
|
soln3[r] += soln[col_offset + (int)(sm_cols[j2] >> sm_dist_shift)] * sm_dist[(int)(sm_cols[j2] & sm_dist_mask)];
|
|
break;
|
|
case 2:
|
|
r = row_offset + i2;
|
|
if (soln3[r] < 0) soln3[r] = 0;
|
|
soln3[r] += sm_dist[(int)(sm_cols[j2] & sm_dist_mask)];
|
|
break;
|
|
}
|
|
//`("(%d,%d)=%f\n", row_offset + i2, col_offset + (int)(sm_cols[j2] >> sm_dist_shift), sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|