You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1345 lines
43 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
package explicit;
import java.io.File;
import java.util.*;
import prism.*;
import explicit.StateValues;
import explicit.rewards.*;
import parser.ast.*;
import parser.type.TypeDouble;
/**
* Explicit-state model checker for discrete-time Markov chains (DTMCs).
*/
public class DTMCModelChecker extends ProbModelChecker
{
// Model checking functions
/**
* Compute probabilities for the contents of a P operator.
*/
protected StateValues checkProbPathFormula(Model model, Expression expr) throws PrismException
{
// Test whether this is a simple path formula (i.e. PCTL)
// and then pass control to appropriate method.
if (expr.isSimplePathFormula()) {
return checkProbPathFormulaSimple(model, expr);
} else {
throw new PrismException("Explicit engine does not yet handle LTL-style path formulas");
}
}
/**
* Compute probabilities for a simple, non-LTL path operator.
*/
protected StateValues checkProbPathFormulaSimple(Model model, Expression expr) throws PrismException
{
StateValues probs = null;
// Negation/parentheses
if (expr instanceof ExpressionUnaryOp) {
ExpressionUnaryOp exprUnary = (ExpressionUnaryOp) expr;
// Parentheses
if (exprUnary.getOperator() == ExpressionUnaryOp.PARENTH) {
// Recurse
probs = checkProbPathFormulaSimple(model, exprUnary.getOperand());
}
// Negation
else if (exprUnary.getOperator() == ExpressionUnaryOp.NOT) {
// Compute, then subtract from 1
probs = checkProbPathFormulaSimple(model, exprUnary.getOperand());
probs.timesConstant(-1.0);
probs.plusConstant(1.0);
}
}
// Temporal operators
else if (expr instanceof ExpressionTemporal) {
ExpressionTemporal exprTemp = (ExpressionTemporal) expr;
// Next
if (exprTemp.getOperator() == ExpressionTemporal.P_X) {
throw new PrismException("The explicit engine does not yet handle the next operator");
}
// Until
if (exprTemp.getOperator() == ExpressionTemporal.P_U) {
if (exprTemp.hasBounds()) {
probs = checkProbBoundedUntil(model, exprTemp);
} else {
probs = checkProbUntil(model, exprTemp);
}
}
// Anything else - convert to until and recurse
else {
probs = checkProbPathFormulaSimple(model, exprTemp.convertToUntilForm());
}
}
if (probs == null)
throw new PrismException("Unrecognised path operator in P operator");
return probs;
}
/**
* Compute probabilities for a bounded until operator.
*/
protected StateValues checkProbBoundedUntil(Model model, ExpressionTemporal expr) throws PrismException
{
int time;
BitSet b1, b2;
StateValues probs = null;
ModelCheckerResult res = null;
// get info from bounded until
time = expr.getUpperBound().evaluateInt(constantValues);
if (expr.upperBoundIsStrict())
time--;
if (time < 0) {
String bound = expr.upperBoundIsStrict() ? "<" + (time + 1) : "<=" + time;
throw new PrismException("Invalid bound " + bound + " in bounded until formula");
}
// model check operands first
b1 = checkExpression(model, expr.getOperand1()).getBitSet();
b2 = checkExpression(model, expr.getOperand2()).getBitSet();
// compute probabilities
// a trivial case: "U<=0"
if (time == 0) {
// prob is 1 in b2 states, 0 otherwise
probs = StateValues.createFromBitSetAsDoubles(b2, model);
} else {
res = computeBoundedUntilProbs((DTMC) model, b1, b2, time);
probs = StateValues.createFromDoubleArray(res.soln, model);
}
return probs;
}
/**
* Compute probabilities for an (unbounded) until operator.
*/
protected StateValues checkProbUntil(Model model, ExpressionTemporal expr) throws PrismException
{
BitSet b1, b2;
StateValues probs = null;
ModelCheckerResult res = null;
// model check operands first
b1 = checkExpression(model, expr.getOperand1()).getBitSet();
b2 = checkExpression(model, expr.getOperand2()).getBitSet();
// print out some info about num states
// mainLog.print("\nb1 = " + JDD.GetNumMintermsString(b1,
// allDDRowVars.n()));
// mainLog.print(" states, b2 = " + JDD.GetNumMintermsString(b2,
// allDDRowVars.n()) + " states\n");
res = computeUntilProbs((DTMC) model, b1, b2);
probs = StateValues.createFromDoubleArray(res.soln, model);
return probs;
}
/**
* Compute rewards for the contents of an R operator.
*/
protected StateValues checkRewardFormula(Model model, MCRewards modelRewards, Expression expr) throws PrismException
{
StateValues rewards = null;
if (expr instanceof ExpressionTemporal) {
ExpressionTemporal exprTemp = (ExpressionTemporal) expr;
switch (exprTemp.getOperator()) {
case ExpressionTemporal.R_F:
rewards = checkRewardReach(model, modelRewards, exprTemp);
break;
default:
throw new PrismException("Explicit engine does not yet handle the " + exprTemp.getOperatorSymbol() + " operator in the R operator");
}
}
if (rewards == null)
throw new PrismException("Unrecognised operator in R operator");
return rewards;
}
/**
* Compute rewards for a reachability reward operator.
*/
protected StateValues checkRewardReach(Model model, MCRewards modelRewards, ExpressionTemporal expr) throws PrismException
{
BitSet b;
StateValues rewards = null;
ModelCheckerResult res = null;
// model check operand first
b = checkExpression(model, expr.getOperand2()).getBitSet();
// print out some info about num states
// mainLog.print("\nb = " + JDD.GetNumMintermsString(b1,
// allDDRowVars.n()));
res = computeReachRewards((DTMC) model, modelRewards, b);
rewards = StateValues.createFromDoubleArray(res.soln, model);
return rewards;
}
/**
* Compute steady-state probabilities for an S operator.
*/
protected StateValues checkSteadyStateFormula(Model model, Expression expr) throws PrismException
{
BitSet b;
StateValues probs = null;
ModelCheckerResult res = null;
// Model check operand first
b = checkExpression(model, expr).getBitSet();
double multProbs[] = Utils.bitsetToDoubleArray(b, model.getNumStates());
res = computeSteadyStateBackwardsProbs((DTMC) model, multProbs);
probs = StateValues.createFromDoubleArray(res.soln, model);
return probs;
}
// Steady-state/transient probability computation
/**
* Compute steady-state probability distribution (forwards).
* Start from initial state (or uniform distribution over multiple initial states).
*/
public StateValues doSteadyState(DTMC dtmc) throws PrismException
{
return doSteadyState(dtmc, (StateValues) null);
}
/**
* Compute steady-state probability distribution (forwards).
* Optionally, use the passed in file initDistFile to give the initial probability distribution (time 0).
* If null, start from initial state (or uniform distribution over multiple initial states).
*/
public StateValues doSteadyState(DTMC dtmc, File initDistFile) throws PrismException
{
StateValues initDist = readDistributionFromFile(initDistFile, dtmc);
return doSteadyState(dtmc, initDist);
}
/**
* Compute steady-state probability distribution (forwards).
* Optionally, use the passed in vector initDist as the initial probability distribution (time 0).
* If null, start from initial state (or uniform distribution over multiple initial states).
* For reasons of efficiency, when a vector is passed in, it will be trampled over,
* so if you wanted it, take a copy.
* @param dtmc The DTMC
* @param initDist Initial distribution (will be overwritten)
*/
public StateValues doSteadyState(DTMC dtmc, StateValues initDist) throws PrismException
{
StateValues initDistNew = (initDist == null) ? buildInitialDistribution(dtmc) : initDist;
ModelCheckerResult res = computeSteadyStateProbs(dtmc, initDistNew.getDoubleArray());
return StateValues.createFromDoubleArray(res.soln, dtmc);
}
/**
* Compute transient probability distribution (forwards).
* Optionally, use the passed in vector initDist as the initial probability distribution (time step 0).
* If null, start from initial state (or uniform distribution over multiple initial states).
* For reasons of efficiency, when a vector is passed in, it will be trampled over,
* so if you wanted it, take a copy.
* @param dtmc The DTMC
* @param k Time step
* @param initDist Initial distribution (will be overwritten)
*/
public StateValues doTransient(DTMC dtmc, int k, double initDist[]) throws PrismException
{
throw new PrismException("Not implemented yet");
}
// Utility methods for probability distributions
/**
* Generate a probability distribution, stored as a StateValues object, from a file.
* If {@code distFile} is null, so is the return value.
*/
public StateValues readDistributionFromFile(File distFile, Model model) throws PrismException
{
StateValues dist = null;
if (distFile != null) {
mainLog.println("\nImporting probability distribution from file \"" + distFile + "\"...");
// Build an empty vector
dist = new StateValues(TypeDouble.getInstance(), model);
// Populate vector from file
dist.readFromFile(distFile);
}
return dist;
}
/**
* Build a probability distribution, stored as a StateValues object,
* from the initial states info of the current model: either probability 1 for
* the (single) initial state or equiprobable over multiple initial states.
* The type of storage (MTBDD or double vector) matches the current engine.
*/
public StateValues buildInitialDistribution(Model model) throws PrismException
{
StateValues dist = null;
// Build an empty vector
dist = new StateValues(TypeDouble.getInstance(), model);
// Populate vector (equiprobable over initial states)
double d = 1.0 / model.getNumInitialStates();
for (int in : model.getInitialStates()) {
dist.setDoubleValue(in, d);
}
return dist;
}
// Numerical computation functions
/**
* Compute reachability probabilities.
* i.e. compute the probability of reaching a state in {@code target}.
* @param dtmc The DTMC
* @param target Target states
*/
public ModelCheckerResult computeReachProbs(DTMC dtmc, BitSet target) throws PrismException
{
return computeReachProbs(dtmc, null, target, null, null);
}
/**
* Compute until probabilities.
* i.e. compute the probability of reaching a state in {@code target},
* while remaining in those in @{code remain}.
* @param dtmc The DTMC
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
*/
public ModelCheckerResult computeUntilProbs(DTMC dtmc, BitSet remain, BitSet target) throws PrismException
{
return computeReachProbs(dtmc, remain, target, null, null);
}
/**
* Compute reachability/until probabilities.
* i.e. compute the min/max probability of reaching a state in {@code target},
* while remaining in those in @{code remain}.
* @param dtmc The DTMC
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param init Optionally, an initial solution vector (may be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
public ModelCheckerResult computeReachProbs(DTMC dtmc, BitSet remain, BitSet target, double init[], BitSet known) throws PrismException
{
ModelCheckerResult res = null;
BitSet no, yes;
int i, n, numYes, numNo;
long timer, timerProb0, timerProb1;
// Local copy of setting
LinEqMethod linEqMethod = this.linEqMethod;
// Switch to a supported method, if necessary
if (!(linEqMethod == LinEqMethod.POWER || linEqMethod == LinEqMethod.GAUSS_SEIDEL)) {
linEqMethod = LinEqMethod.GAUSS_SEIDEL;
mainLog.printWarning("Switching to linear equation solution method \"" + linEqMethod.fullName() + "\"");
}
// Start probabilistic reachability
timer = System.currentTimeMillis();
mainLog.println("Starting probabilistic reachability...");
// Check for deadlocks in non-target state (because breaks e.g. prob1)
dtmc.checkForDeadlocks(target);
// Store num states
n = dtmc.getNumStates();
// Optimise by enlarging target set (if more info is available)
if (init != null && known != null) {
BitSet targetNew = new BitSet(n);
for (i = 0; i < n; i++) {
targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 1.0));
}
target = targetNew;
}
// Precomputation
timerProb0 = System.currentTimeMillis();
if (precomp && prob0) {
no = prob0(dtmc, remain, target);
} else {
no = new BitSet();
}
timerProb0 = System.currentTimeMillis() - timerProb0;
timerProb1 = System.currentTimeMillis();
if (precomp && prob1) {
yes = prob1(dtmc, remain, target);
} else {
yes = (BitSet) target.clone();
}
timerProb1 = System.currentTimeMillis() - timerProb1;
// Print results of precomputation
numYes = yes.cardinality();
numNo = no.cardinality();
mainLog.println("target=" + target.cardinality() + ", yes=" + numYes + ", no=" + numNo + ", maybe=" + (n - (numYes + numNo)));
// Compute probabilities
switch (linEqMethod) {
case POWER:
res = computeReachProbsValIter(dtmc, no, yes, init, known);
break;
case GAUSS_SEIDEL:
res = computeReachProbsGaussSeidel(dtmc, no, yes, init, known);
break;
default:
throw new PrismException("Unknown linear equation solution method " + linEqMethod.fullName());
}
// Finished probabilistic reachability
timer = System.currentTimeMillis() - timer;
mainLog.println("Probabilistic reachability took " + timer / 1000.0 + " seconds.");
// Update time taken
res.timeTaken = timer / 1000.0;
res.timeProb0 = timerProb0 / 1000.0;
res.timePre = (timerProb0 + timerProb1) / 1000.0;
return res;
}
/**
* Prob0 precomputation algorithm.
* i.e. determine the states of a DTMC which, with probability 0,
* reach a state in {@code target}, while remaining in those in @{code remain}.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
*/
public BitSet prob0(DTMC dtmc, BitSet remain, BitSet target)
{
int n, iters;
BitSet u, soln, unknown;
boolean u_done;
long timer;
// Start precomputation
timer = System.currentTimeMillis();
mainLog.println("Starting Prob0...");
// Special case: no target states
if (target.cardinality() == 0) {
soln = new BitSet(dtmc.getNumStates());
soln.set(0, dtmc.getNumStates());
return soln;
}
// Initialise vectors
n = dtmc.getNumStates();
u = new BitSet(n);
soln = new BitSet(n);
// Determine set of states actually need to perform computation for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
if (remain != null)
unknown.and(remain);
// Fixed point loop
iters = 0;
u_done = false;
// Least fixed point - should start from 0 but we optimise by
// starting from 'target', thus bypassing first iteration
u.or(target);
soln.or(target);
while (!u_done) {
iters++;
// Single step of Prob0
dtmc.prob0step(unknown, u, soln);
// Check termination
u_done = soln.equals(u);
// u = soln
u.clear();
u.or(soln);
}
// Negate
u.flip(0, n);
// Finished precomputation
timer = System.currentTimeMillis() - timer;
mainLog.print("Prob0");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
return u;
}
/**
* Prob1 precomputation algorithm.
* i.e. determine the states of a DTMC which, with probability 1,
* reach a state in {@code target}, while remaining in those in @{code remain}.
* @param mdp The MDP
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
*/
public BitSet prob1(DTMC dtmc, BitSet remain, BitSet target)
{
int n, iters;
BitSet u, v, soln, unknown;
boolean u_done, v_done;
long timer;
// Start precomputation
timer = System.currentTimeMillis();
mainLog.println("Starting Prob1...");
// Special case: no target states
if (target.cardinality() == 0) {
return new BitSet(dtmc.getNumStates());
}
// Initialise vectors
n = dtmc.getNumStates();
u = new BitSet(n);
v = new BitSet(n);
soln = new BitSet(n);
// Determine set of states actually need to perform computation for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
if (remain != null)
unknown.and(remain);
// Nested fixed point loop
iters = 0;
u_done = false;
// Greatest fixed point
u.set(0, n);
while (!u_done) {
v_done = false;
// Least fixed point - should start from 0 but we optimise by
// starting from 'target', thus bypassing first iteration
v.clear();
v.or(target);
soln.clear();
soln.or(target);
while (!v_done) {
iters++;
// Single step of Prob1
dtmc.prob1step(unknown, u, v, soln);
// Check termination (inner)
v_done = soln.equals(v);
// v = soln
v.clear();
v.or(soln);
}
// Check termination (outer)
u_done = v.equals(u);
// u = v
u.clear();
u.or(v);
}
// Finished precomputation
timer = System.currentTimeMillis() - timer;
mainLog.print("Prob1");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
return u;
}
/**
* Compute reachability probabilities using value iteration.
* @param dtmc The DTMC
* @param no Probability 0 states
* @param yes Probability 1 states
* @param init Optionally, an initial solution vector (will be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
protected ModelCheckerResult computeReachProbsValIter(DTMC dtmc, BitSet no, BitSet yes, double init[], BitSet known) throws PrismException
{
ModelCheckerResult res;
BitSet unknown;
int i, n, iters;
double soln[], soln2[], tmpsoln[], initVal;
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting value iteration...");
// Store num states
n = dtmc.getNumStates();
// Create solution vector(s)
soln = new double[n];
soln2 = (init == null) ? new double[n] : init;
// Initialise solution vectors. Use (where available) the following in order of preference:
// (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal
// where initVal is 0.0 or 1.0, depending on whether we converge from below/above.
initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0;
if (init != null) {
if (known != null) {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
}
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal;
}
// Determine set of states actually need to compute values for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(yes);
unknown.andNot(no);
if (known != null)
unknown.andNot(known);
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
iters++;
// Matrix-vector multiply
dtmc.mvMult(soln, soln2, unknown, false);
// Check termination
done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished value iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Value iteration");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error
if (!done) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute reachability probabilities using Gauss-Seidel.
* @param dtmc The DTMC
* @param no Probability 0 states
* @param yes Probability 1 states
* @param init Optionally, an initial solution vector (will be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
protected ModelCheckerResult computeReachProbsGaussSeidel(DTMC dtmc, BitSet no, BitSet yes, double init[], BitSet known) throws PrismException
{
ModelCheckerResult res;
BitSet unknown;
int i, n, iters;
double soln[], initVal, maxDiff;
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting Gauss-Seidel...");
// Store num states
n = dtmc.getNumStates();
// Create solution vector
soln = (init == null) ? new double[n] : init;
// Initialise solution vector. Use (where available) the following in order of preference:
// (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal
// where initVal is 0.0 or 1.0, depending on whether we converge from below/above.
initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0;
if (init != null) {
if (known != null) {
for (i = 0; i < n; i++)
soln[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
}
} else {
for (i = 0; i < n; i++)
soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal;
}
// Determine set of states actually need to compute values for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(yes);
unknown.andNot(no);
if (known != null)
unknown.andNot(known);
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
iters++;
// Matrix-vector multiply
maxDiff = dtmc.mvMultGS(soln, unknown, false, termCrit == TermCrit.ABSOLUTE);
// Check termination
done = maxDiff < termCritParam;
}
// Finished Gauss-Seidel
timer = System.currentTimeMillis() - timer;
mainLog.print("Gauss-Seidel");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error
if (!done) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute bounded reachability probabilities.
* i.e. compute the probability of reaching a state in {@code target} within k steps.
* @param dtmc The DTMC
* @param target Target states
* @param k Bound
*/
public ModelCheckerResult computeBoundedReachProbs(DTMC dtmc, BitSet target, int k) throws PrismException
{
return computeBoundedReachProbs(dtmc, null, target, k, null, null);
}
/**
* Compute bounded until probabilities.
* i.e. compute the probability of reaching a state in {@code target},
* within k steps, and while remaining in states in @{code remain}.
* @param dtmc The DTMC
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param k Bound
*/
public ModelCheckerResult computeBoundedUntilProbs(DTMC dtmc, BitSet remain, BitSet target, int k) throws PrismException
{
return computeBoundedReachProbs(dtmc, remain, target, k, null, null);
}
/**
* Compute bounded reachability/until probabilities.
* i.e. compute the probability of reaching a state in {@code target},
* within k steps, and while remaining in states in @{code remain}.
* @param dtmc The DTMC
* @param remain Remain in these states (optional: null means "all")
* @param target Target states
* @param k Bound
* @param init Initial solution vector - pass null for default
* @param results Optional array of size b+1 to store (init state) results for each step (null if unused)
*/
public ModelCheckerResult computeBoundedReachProbs(DTMC dtmc, BitSet remain, BitSet target, int k, double init[], double results[]) throws PrismException
{
// TODO: implement until
ModelCheckerResult res = null;
int i, n, iters;
double soln[], soln2[], tmpsoln[];
long timer;
// Start bounded probabilistic reachability
timer = System.currentTimeMillis();
mainLog.println("Starting bounded probabilistic reachability...");
// Store num states
n = dtmc.getNumStates();
// Create solution vector(s)
soln = new double[n];
soln2 = (init == null) ? new double[n] : init;
// Initialise solution vectors. Use passed in initial vector, if present
if (init != null) {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0;
}
// Store intermediate results if required
// (compute min/max value over initial states for first step)
if (results != null) {
// TODO: whether this is min or max should be specified somehow
results[0] = Utils.minMaxOverArraySubset(soln2, dtmc.getInitialStates(), true);
}
// Start iterations
iters = 0;
while (iters < k) {
iters++;
// Matrix-vector multiply
dtmc.mvMult(soln, soln2, target, true);
// Store intermediate results if required
// (compute min/max value over initial states for this step)
if (results != null) {
// TODO: whether this is min or max should be specified somehow
results[iters] = Utils.minMaxOverArraySubset(soln2, dtmc.getInitialStates(), true);
}
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished bounded probabilistic reachability
timer = System.currentTimeMillis() - timer;
mainLog.print("Bounded probabilistic reachability");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.lastSoln = soln2;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
res.timePre = 0.0;
return res;
}
/**
* Compute expected reachability rewards.
* @param dtmc The DTMC
* @param mcRewards The rewards
* @param target Target states
*/
public ModelCheckerResult computeReachRewards(DTMC dtmc, MCRewards mcRewards, BitSet target) throws PrismException
{
return computeReachRewards(dtmc, mcRewards, target, null, null);
}
/**
* Compute expected reachability rewards.
* @param dtmc The DTMC
* @param mcRewards The rewards
* @param target Target states
* @param init Optionally, an initial solution vector (may be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
public ModelCheckerResult computeReachRewards(DTMC dtmc, MCRewards mcRewards, BitSet target, double init[], BitSet known) throws PrismException
{
ModelCheckerResult res = null;
BitSet inf;
int i, n, numTarget, numInf;
long timer, timerProb1;
// Local copy of setting
LinEqMethod linEqMethod = this.linEqMethod;
// Switch to a supported method, if necessary
if (!(linEqMethod == LinEqMethod.POWER)) {
linEqMethod = LinEqMethod.POWER;
mainLog.printWarning("Switching to linear equation solution method \"" + linEqMethod.fullName() + "\"");
}
// Start expected reachability
timer = System.currentTimeMillis();
mainLog.println("Starting expected reachability...");
// Check for deadlocks in non-target state (because breaks e.g. prob1)
dtmc.checkForDeadlocks(target);
// Store num states
n = dtmc.getNumStates();
// Optimise by enlarging target set (if more info is available)
if (init != null && known != null) {
BitSet targetNew = new BitSet(n);
for (i = 0; i < n; i++) {
targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 0.0));
}
target = targetNew;
}
// Precomputation (not optional)
timerProb1 = System.currentTimeMillis();
inf = prob1(dtmc, null, target);
inf.flip(0, n);
timerProb1 = System.currentTimeMillis() - timerProb1;
// Print results of precomputation
numTarget = target.cardinality();
numInf = inf.cardinality();
mainLog.println("target=" + numTarget + ", inf=" + numInf + ", rest=" + (n - (numTarget + numInf)));
// Compute rewards
switch (linEqMethod) {
case POWER:
res = computeReachRewardsValIter(dtmc, mcRewards, target, inf, init, known);
break;
default:
throw new PrismException("Unknown linear equation solution method " + linEqMethod.fullName());
}
// Finished expected reachability
timer = System.currentTimeMillis() - timer;
mainLog.println("Expected reachability took " + timer / 1000.0 + " seconds.");
// Update time taken
res.timeTaken = timer / 1000.0;
res.timePre = timerProb1 / 1000.0;
return res;
}
/**
* Compute expected reachability rewards using value iteration.
* @param dtmc The DTMC
* @param mcRewards The rewards
* @param target Target states
* @param inf States for which reward is infinite
* @param init Optionally, an initial solution vector (will be overwritten)
* @param known Optionally, a set of states for which the exact answer is known
* Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
*/
protected ModelCheckerResult computeReachRewardsValIter(DTMC dtmc, MCRewards mcRewards, BitSet target, BitSet inf, double init[], BitSet known)
throws PrismException
{
ModelCheckerResult res;
BitSet unknown;
int i, n, iters;
double soln[], soln2[], tmpsoln[];
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting value iteration...");
// Store num states
n = dtmc.getNumStates();
// Create solution vector(s)
soln = new double[n];
soln2 = (init == null) ? new double[n] : init;
// Initialise solution vectors. Use (where available) the following in order of preference:
// (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0
if (init != null) {
if (known != null) {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
}
} else {
for (i = 0; i < n; i++)
soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0;
}
// Determine set of states actually need to compute values for
unknown = new BitSet();
unknown.set(0, n);
unknown.andNot(target);
unknown.andNot(inf);
if (known != null)
unknown.andNot(known);
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
//mainLog.println(soln);
iters++;
// Matrix-vector multiply
dtmc.mvMultRew(soln, mcRewards, soln2, unknown, false);
// Check termination
done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished value iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Value iteration");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error
if (!done) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute (forwards) steady-state probabilities
* i.e. compute the long-run probability of being in each state,
* assuming the initial distribution {@code initDist}.
* For space efficiency, the initial distribution vector will be modified and values over-written,
* so if you wanted it, take a copy.
* @param dtmc The DTMC
* @param initDist Initial distribution (will be overwritten)
*/
public ModelCheckerResult computeSteadyStateProbs(DTMC dtmc, double initDist[]) throws PrismException
{
ModelCheckerResult res;
BitSet startNot, bscc;
double probBSCCs[], solnProbs[], reachProbs[];
int n, numBSCCs = 0, allInOneBSCC;
long timer;
timer = System.currentTimeMillis();
// Store num states
n = dtmc.getNumStates();
// Create results vector
solnProbs = new double[n];
// Compute bottom strongly connected components (BSCCs)
SCCComputer sccComputer = SCCComputer.createSCCComputer(sccMethod, dtmc);
sccComputer.computeBSCCs();
List<BitSet> bsccs = sccComputer.getBSCCs();
BitSet notInBSCCs = sccComputer.getNotInBSCCs();
numBSCCs = bsccs.size();
// See which states in the initial distribution do *not* have non-zero prob
startNot = new BitSet();
for (int i = 0; i < n; i++) {
if (initDist[i] == 0)
startNot.set(i);
}
// Determine whether initial states are all in a single BSCC
allInOneBSCC = -1;
for (int b = 0; b < numBSCCs; b++) {
if (!bsccs.get(b).intersects(startNot)) {
allInOneBSCC = b;
break;
}
}
// If all initial states are in a single BSCC, it's easy...
// Just compute steady-state probabilities for the BSCC
if (allInOneBSCC != -1) {
mainLog.println("\nInitial states all in one BSCC (so no reachability probabilities computed)");
bscc = bsccs.get(allInOneBSCC);
computeSteadyStateProbsForBSCC(dtmc, bscc, solnProbs);
}
// Otherwise, have to consider all the BSCCs
else {
// Compute probability of reaching each BSCC from initial distribution
probBSCCs = new double[numBSCCs];
for (int b = 0; b < numBSCCs; b++) {
mainLog.println("\nComputing probability of reaching BSCC " + (b + 1));
bscc = bsccs.get(b);
// Compute probabilities
reachProbs = computeUntilProbs(dtmc, notInBSCCs, bscc).soln;
// Compute probability of reaching BSCC, which is dot product of
// vectors for initial distribution and probabilities of reaching it
probBSCCs[b] = 0.0;
for (int i = 0; i < n; i++) {
probBSCCs[b] += initDist[i] * reachProbs[i];
}
mainLog.print("\nProbability of reaching BSCC " + (b + 1) + ": " + probBSCCs[b] + "\n");
}
// Compute steady-state probabilities for each BSCC
for (int b = 0; b < numBSCCs; b++) {
mainLog.println("\nComputing steady-state probabilities for BSCC " + (b + 1));
bscc = bsccs.get(b);
// Compute steady-state probabilities for the BSCC
computeSteadyStateProbsForBSCC(dtmc, bscc, solnProbs);
// Multiply by BSCC reach prob
for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1))
solnProbs[i] *= probBSCCs[b];
}
}
// Return results
res = new ModelCheckerResult();
res.soln = solnProbs;
timer = System.currentTimeMillis() - timer;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Perform (backwards) steady-state probabilities, as required for (e.g. CSL) model checking.
* Compute, for each initial state s, the sum over all states s'
* of the steady-state probability of being in s'
* multiplied by the corresponding probability in the vector {@code multProbs}.
* If {@code multProbs} is null, it is assumed to be all 1s.
* @param dtmc The DTMC
* @param multProbs Multiplication vector (optional: null means all 1s)
*/
public ModelCheckerResult computeSteadyStateBackwardsProbs(DTMC dtmc, double multProbs[]) throws PrismException
{
ModelCheckerResult res;
BitSet bscc;
double probBSCCs[], ssProbs[], reachProbs[], soln[];
int n, numBSCCs = 0;
long timer;
timer = System.currentTimeMillis();
// Store num states
n = dtmc.getNumStates();
// Compute bottom strongly connected components (BSCCs)
SCCComputer sccComputer = SCCComputer.createSCCComputer(sccMethod, dtmc);
sccComputer.computeBSCCs();
List<BitSet> bsccs = sccComputer.getBSCCs();
BitSet notInBSCCs = sccComputer.getNotInBSCCs();
numBSCCs = bsccs.size();
// Compute steady-state probability for each BSCC...
probBSCCs = new double[numBSCCs];
ssProbs = new double[n];
for (int b = 0; b < numBSCCs; b++) {
mainLog.println("\nComputing steady state probabilities for BSCC " + (b + 1));
bscc = bsccs.get(b);
// Compute steady-state probabilities for the BSCC
computeSteadyStateProbsForBSCC(dtmc, bscc, ssProbs);
// Compute weighted sum of probabilities with multProbs
probBSCCs[b] = 0.0;
if (multProbs == null) {
for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1)) {
probBSCCs[b] += ssProbs[i];
}
} else {
for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1)) {
probBSCCs[b] += multProbs[i] * ssProbs[i];
}
}
mainLog.print("\nValue for BSCC " + (b + 1) + ": " + probBSCCs[b] + "\n");
}
// Create/initialise prob vector
soln = new double[n];
for (int i = 0; i < n; i++) {
soln[i] = 0.0;
}
// If every state is in a BSCC, it's much easier...
if (notInBSCCs.isEmpty()) {
mainLog.println("\nAll states are in BSCCs (so no reachability probabilities computed)");
for (int b = 0; b < numBSCCs; b++) {
bscc = bsccs.get(b);
for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1))
soln[i] += probBSCCs[b];
}
}
// Otherwise we have to do more work...
else {
// Compute probabilities of reaching each BSCC...
for (int b = 0; b < numBSCCs; b++) {
// Skip BSCCs with zero probability
if (probBSCCs[b] == 0.0)
continue;
mainLog.println("\nComputing probabilities of reaching BSCC " + (b + 1));
bscc = bsccs.get(b);
// Compute probabilities
reachProbs = computeUntilProbs(dtmc, notInBSCCs, bscc).soln;
// Multiply by value for BSCC, add to total
for (int i = 0; i < n; i++) {
soln[i] += reachProbs[i] * probBSCCs[b];
}
}
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
timer = System.currentTimeMillis() - timer;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute steady-state probabilities for a BSCC
* i.e. compute the long-run probability of being in each state of the BSCC.
* No initial distribution is specified since it does not affect the result.
* The result will be stored in the relevant portion of a full vector,
* whose size equals the number of states in the DTMC.
* Optionally, pass in an existing vector to be used for this purpose.
* @param dtmc The DTMC
* @param bscc The BSCC to be analysed
* @param result Storage for result (ignored if null)
*/
public ModelCheckerResult computeSteadyStateProbsForBSCC(DTMC dtmc, BitSet bscc, double result[]) throws PrismException
{
ModelCheckerResult res;
int n, iters;
double soln[], soln2[], tmpsoln[];
boolean done;
long timer;
// Start value iteration
timer = System.currentTimeMillis();
mainLog.println("Starting value iteration...");
// Store num states
n = dtmc.getNumStates();
// Create solution vector(s)
// Use the passed in vector, if present
soln = result == null ? new double[n] : result;
soln2 = new double[n];
// Initialise solution vectors. Equiprobable for BSCC states.
double equiprob = 1.0 / bscc.cardinality();
for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1))
soln[i] = soln2[i] = equiprob;
// Start iterations
iters = 0;
done = false;
while (!done && iters < maxIters) {
iters++;
// Matrix-vector multiply
dtmc.vmMult(soln, soln2);
// Check termination
done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
// Swap vectors for next iter
tmpsoln = soln;
soln = soln2;
soln2 = tmpsoln;
}
// Finished value iteration
timer = System.currentTimeMillis() - timer;
mainLog.print("Value iteration");
mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
// Non-convergence is an error
if (!done) {
String msg = "Iterative method did not converge within " + iters + " iterations.";
msg += "\nConsider using a different numerical method or increasing the maximum number of iterations";
throw new PrismException(msg);
}
// Return results
res = new ModelCheckerResult();
res.soln = soln;
res.numIters = iters;
res.timeTaken = timer / 1000.0;
return res;
}
/**
* Compute transient probabilities
* i.e. compute the probability of being in each state at time step {@code k},
* assuming the initial distribution {@code initDist}.
* For space efficiency, the initial distribution vector will be modified and values over-written,
* so if you wanted it, take a copy.
* @param dtmc The DTMC
* @param k Time step
* @param initDist Initial distribution (will be overwritten)
*/
public ModelCheckerResult computeTransientProbs(DTMC dtmc, int k, double initDist[]) throws PrismException
{
throw new PrismException("Not implemented yet");
}
/**
* Simple test program.
*/
public static void main(String args[])
{
DTMCModelChecker mc;
DTMCSimple dtmc;
ModelCheckerResult res;
BitSet target;
Map<String, BitSet> labels;
try {
mc = new DTMCModelChecker();
dtmc = new DTMCSimple();
dtmc.buildFromPrismExplicit(args[0]);
//System.out.println(dtmc);
labels = mc.loadLabelsFile(args[1]);
//System.out.println(labels);
target = labels.get(args[2]);
if (target == null)
throw new PrismException("Unknown label \"" + args[2] + "\"");
for (int i = 3; i < args.length; i++) {
if (args[i].equals("-nopre"))
mc.setPrecomp(false);
}
res = mc.computeReachProbs(dtmc, target);
System.out.println(res.soln[0]);
} catch (PrismException e) {
System.out.println(e);
}
}
}