You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1100 lines
27 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
// * Vojtech Forejt <vojtech.forejt@cs.ox.ac.uk> (University of Oxford)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
package explicit;
import java.util.*;
import java.util.Map.Entry;
import java.io.*;
import common.IterableStateSet;
import explicit.rewards.STPGRewards;
import prism.PrismException;
import prism.PrismLog;
import prism.PrismUtils;
import strat.MDStrategy;
/**
* Simple explicit-state representation of a stochastic two-player game (STPG),
* as used for abstraction of MDPs, i.e. with strict cycling between player 1,
* player 2 and probabilistic states. Thus, we store this a set of sets of
* distributions for each state. This means that the player 2 states are not true
* states, i.e. they don't count for statistics and player 1 states are treated
* as successors of each other.
*/
public class STPGAbstrSimple extends ModelExplicit implements STPG, NondetModelSimple
{
// Transition function (Steps)
protected List<ArrayList<DistributionSet>> trans;
// Flag: allow dupes in distribution sets?
public boolean allowDupes = false;
// Other statistics
protected int numDistrSets;
protected int numDistrs;
protected int numTransitions;
protected int maxNumDistrSets;
protected int maxNumDistrs;
/**
* Constructor: empty STPG.
*/
public STPGAbstrSimple()
{
initialise(0);
}
/**
* Constructor: new STPG with fixed number of states.
*/
public STPGAbstrSimple(int numStates)
{
initialise(numStates);
}
/**
* Constructor: build an STPG from an MDP.
* Data is copied directly from the MDP so take a copy first if you plan to keep/modify the MDP.
*/
public STPGAbstrSimple(MDPSimple m)
{
DistributionSet set;
int i;
// TODO: actions?
initialise(m.getNumStates());
copyFrom(m);
for (i = 0; i < numStates; i++) {
set = newDistributionSet(null);
set.addAll(m.getChoices(i));
addDistributionSet(i, set);
}
}
// Mutators (for ModelSimple)
@Override
public void initialise(int numStates)
{
super.initialise(numStates);
numDistrSets = numDistrs = numTransitions = 0;
maxNumDistrSets = maxNumDistrs = 0;
trans = new ArrayList<ArrayList<DistributionSet>>(numStates);
for (int i = 0; i < numStates; i++) {
trans.add(new ArrayList<DistributionSet>());
}
}
@Override
public void clearState(int i)
{
// Do nothing if state does not exist
if (i >= numStates || i < 0)
return;
// Clear data structures and update stats
List<DistributionSet> list = trans.get(i);
numDistrSets -= list.size();
for (DistributionSet set : list) {
numDistrs -= set.size();
for (Distribution distr : set)
numTransitions -= distr.size();
}
//TODO: recompute maxNumDistrSets
//TODO: recompute maxNumDistrs
// Remove all distribution sets
trans.set(i, new ArrayList<DistributionSet>(0));
}
@Override
public int addState()
{
addStates(1);
return numStates - 1;
}
@Override
public void addStates(int numToAdd)
{
for (int i = 0; i < numToAdd; i++) {
trans.add(new ArrayList<DistributionSet>());
}
numStates += numToAdd;
}
@Override
public void buildFromPrismExplicit(String filename) throws PrismException
{
BufferedReader in;
Distribution distr;
DistributionSet distrs;
String s, ss[];
int i, j, k1, k2, iLast, k1Last, k2Last, n, lineNum = 0;
double prob;
try {
// Open file
in = new BufferedReader(new FileReader(new File(filename)));
// Parse first line to get num states
s = in.readLine();
lineNum = 1;
if (s == null) {
in.close();
throw new PrismException("Missing first line of .tra file");
}
ss = s.split(" ");
n = Integer.parseInt(ss[0]);
// Initialise
initialise(n);
// Go though list of transitions in file
iLast = -1;
k1Last = -1;
k2Last = -1;
distrs = null;
distr = null;
s = in.readLine();
lineNum++;
while (s != null) {
s = s.trim();
if (s.length() > 0) {
ss = s.split(" ");
i = Integer.parseInt(ss[0]);
k1 = Integer.parseInt(ss[1]);
k2 = Integer.parseInt(ss[2]);
j = Integer.parseInt(ss[3]);
prob = Double.parseDouble(ss[4]);
// For a new state or distribution set or distribution
if (i != iLast || k1 != k1Last || k2 != k2Last) {
// Add any previous distribution to the last set, create new one
if (distrs != null) {
distrs.add(distr);
}
distr = new Distribution();
// Only for a new state or distribution set...
if (i != iLast || k1 != k1Last) {
// Add any previous distribution set to the last state, create new one
if (distrs != null) {
addDistributionSet(iLast, distrs);
}
distrs = newDistributionSet(null);
}
}
// Add transition to the current distribution
distr.add(j, prob);
// Prepare for next iter
iLast = i;
k1Last = k1;
k2Last = k2;
}
s = in.readLine();
lineNum++;
}
// Add previous distribution to the last set
distrs.add(distr);
// Add previous distribution set to the last state
addDistributionSet(iLast, distrs);
// Close file
in.close();
} catch (IOException e) {
System.out.println(e);
System.exit(1);
} catch (NumberFormatException e) {
throw new PrismException("Problem in .tra file (line " + lineNum + ") for " + getModelType());
}
}
// Mutators (other)
/**
* Creates a new distribution set suitable for passing to addDistributionSet(...)
* i.e. a data structure consistent with the internals of the this class.
* An optional action label (any Object type) can be specified; null if not needed.
*/
public DistributionSet newDistributionSet(Object action)
{
return new DistributionSet(action);
}
/**
* Add distribution set 'newSet' to state s (which must exist).
* Distribution set is only actually added if it does not already exists for state s.
* (Assuming 'allowDupes' flag is not enabled.)
* Returns the index of the (existing or newly added) set.
* Returns -1 in case of error.
*/
public int addDistributionSet(int s, DistributionSet newSet)
{
ArrayList<DistributionSet> set;
// Check state exists
if (s >= numStates || s < 0)
return -1;
// Add distribution set (if new)
set = trans.get(s);
if (!allowDupes) {
int i = set.indexOf(newSet);
if (i != -1)
return i;
}
set.add(newSet);
// Update stats
numDistrSets++;
maxNumDistrSets = Math.max(maxNumDistrSets, set.size());
numDistrs += newSet.size();
maxNumDistrs = Math.max(maxNumDistrs, newSet.size());
for (Distribution distr : newSet)
numTransitions += distr.size();
return set.size() - 1;
}
// Accessors (for ModelSimple)
@Override
public int getNumTransitions()
{
return numTransitions;
}
@Override
public Iterator<Integer> getSuccessorsIterator(final int s)
{
// Need to build set to avoid duplicates
// So not necessarily the fastest method to access successors
HashSet<Integer> succs = new HashSet<Integer>();
for (DistributionSet distrs : trans.get(s)) {
for (Distribution distr : distrs) {
succs.addAll(distr.getSupport());
}
}
return succs.iterator();
}
@Override
public boolean isSuccessor(int s1, int s2)
{
for (DistributionSet distrs : trans.get(s1)) {
for (Distribution distr : distrs) {
if (distr.contains(s2))
return true;
}
}
return false;
}
@Override
public boolean allSuccessorsInSet(int s, BitSet set)
{
for (DistributionSet distrs : trans.get(s)) {
for (Distribution distr : distrs) {
if (!distr.isSubsetOf(set))
return false;
}
}
return true;
}
@Override
public boolean someSuccessorsInSet(int s, BitSet set)
{
for (DistributionSet distrs : trans.get(s)) {
for (Distribution distr : distrs) {
if (distr.isSubsetOf(set))
return true;
}
}
return false;
}
@Override
public void findDeadlocks(boolean fix) throws PrismException
{
for (int i = 0; i < numStates; i++) {
// Note that no distributions is a deadlock, not an empty distribution
if (trans.get(i).isEmpty()) {
addDeadlockState(i);
if (fix) {
DistributionSet distrs = newDistributionSet(null);
Distribution distr = new Distribution();
distr.add(i, 1.0);
distrs.add(distr);
addDistributionSet(i, distrs);
}
}
}
}
@Override
public void checkForDeadlocks(BitSet except) throws PrismException
{
for (int i = 0; i < numStates; i++) {
if (trans.get(i).isEmpty() && (except == null || !except.get(i)))
throw new PrismException("STPG has a deadlock in state " + i);
}
// TODO: Check for empty distributions sets too?
}
@Override
public void exportTransitionsToDotFile(int i, PrismLog out, Iterable<explicit.graphviz.Decorator> decorators)
{
int j, k;
String nij, nijk;
j = -1;
// we ignore decorators for the moment
for (DistributionSet distrs : trans.get(i)) {
j++;
nij = "n" + i + "_" + j;
out.print(i + " -> " + nij + " [ arrowhead=none,label=\"" + j + "\" ];\n");
out.print(nij + " [ shape=circle,width=0.1,height=0.1,label=\"\" ];\n");
k = -1;
for (Distribution distr : distrs) {
k++;
nijk = "n" + i + "_" + j + "_" + k;
out.print(nij + " -> " + nijk + " [ arrowhead=none,label=\"" + k + "\" ];\n");
out.print(nijk + " [ shape=point,label=\"\" ];\n");
for (Map.Entry<Integer, Double> e : distr) {
out.print(nijk + " -> " + e.getKey() + " [ label=\"" + e.getValue() + "\" ];\n");
}
}
}
}
@Override
public void exportToDotFileWithStrat(PrismLog out, BitSet mark, int strat[])
{
throw new RuntimeException("Not yet supported");
}
@Override
public String infoString()
{
String s = "";
s += numStates + " states (" + getNumInitialStates() + " initial)";
s += ", " + numTransitions + " transitions";
s += ", " + numDistrs + " choices";
s += ", " + numDistrSets + " choice sets";
s += ", p1max/avg = " + maxNumDistrSets + "/" + PrismUtils.formatDouble2dp(((double) numDistrSets) / numStates);
s += ", p2max/avg = " + maxNumDistrs + "/" + PrismUtils.formatDouble2dp(((double) numDistrs) / numDistrSets);
return s;
}
@Override
public String infoStringTable()
{
String s = "";
s += "States: " + numStates + " (" + getNumInitialStates() + " initial)\n";
s += "Transitions: " + numTransitions + "\n";
s += "Choices: " + numDistrs + "\n";
s += "P1 max/avg: " + maxNumDistrSets + "/" + PrismUtils.formatDouble2dp(((double) numDistrSets) / numStates) + "\n";
s += "P2 max/avg: " + maxNumDistrs + "/" + PrismUtils.formatDouble2dp(((double) numDistrs) / numDistrSets) + "\n";
return s;
}
// Accessors (for NondetModel)
@Override
public int getNumChoices(int s)
{
return trans.get(s).size();
}
@Override
public int getMaxNumChoices()
{
return maxNumDistrSets;
}
@Override
public int getNumChoices()
{
return numDistrSets;
}
@Override
public Object getAction(int s, int i)
{
// No actions stored currently
return null;
}
@Override
public boolean areAllChoiceActionsUnique()
{
throw new RuntimeException("Not implemented");
}
@Override
public boolean allSuccessorsInSet(int s, int i, BitSet set)
{
return trans.get(s).get(i).isSubsetOf(set);
}
@Override
public boolean someSuccessorsInSet(int s, int i, BitSet set)
{
return trans.get(s).get(i).containsOneOf(set);
}
@Override
public SuccessorsIterator getSuccessors(final int s, final int i)
{
return SuccessorsIterator.chain(new Iterator<SuccessorsIterator>() {
private Iterator<Distribution> iterator = trans.get(s).get(i).iterator();
@Override
public boolean hasNext()
{
return iterator.hasNext();
}
@Override
public SuccessorsIterator next()
{
Distribution dist = iterator.next();
return SuccessorsIterator.from(dist.getSupport().iterator(), true);
}
});
}
// Accessors (for STPG)
@Override
public int getPlayer(int s)
{
// All states are player 1
return 1;
}
@Override
public int getNumTransitions(int s, int i)
{
// All choices are nested
return 0;
}
@Override
public Iterator<Entry<Integer, Double>> getTransitionsIterator(int s, int i)
{
// All choices are nested
return null;
}
@Override
public Model constructInducedModel(MDStrategy strat)
{
throw new RuntimeException("Not implemented");
}
@Override
public boolean isChoiceNested(int s, int i)
{
// All choices are nested
return true;
}
@Override
public int getNumNestedChoices(int s, int i)
{
return trans.get(s).get(i).size();
}
@Override
public Object getNestedAction(int s, int i, int j)
{
return trans.get(s).get(i).getAction();
}
@Override
public int getNumNestedTransitions(int s, int i, int j)
{
DistributionSet ds = trans.get(s).get(i);
Iterator<Distribution> iter = ds.iterator();
Distribution distr = null;
int k = 0;
while (iter.hasNext() && k <= j) {
distr = iter.next();
k++;
}
if (k <= j)
return 0;
else
return distr.size();
}
@Override
public Iterator<Entry<Integer, Double>> getNestedTransitionsIterator(int s, int i, int j)
{
DistributionSet ds = trans.get(s).get(i);
Iterator<Distribution> iter = ds.iterator();
Distribution distr = null;
int k = 0;
while (iter.hasNext() && k <= j) {
distr = iter.next();
k++;
}
if (k <= j)
return null;
else
return distr.iterator();
}
@Override
public void prob0step(BitSet subset, BitSet u, boolean forall1, boolean forall2, BitSet result)
{
boolean b1, b2, b3;
for (int i : new IterableStateSet(subset, numStates)) {
b1 = forall1; // there exists or for all player 1 choices
for (DistributionSet distrs : trans.get(i)) {
b2 = forall2; // there exists or for all player 2 choices
for (Distribution distr : distrs) {
b3 = distr.containsOneOf(u);
if (forall2) {
if (!b3)
b2 = false;
} else {
if (b3)
b2 = true;
}
}
if (forall1) {
if (!b2)
b1 = false;
} else {
if (b2)
b1 = true;
}
}
result.set(i, b1);
}
}
@Override
public void prob1step(BitSet subset, BitSet u, BitSet v, boolean forall1, boolean forall2, BitSet result)
{
boolean b1, b2, b3;
for (int i : new IterableStateSet(subset, numStates)) {
b1 = forall1; // there exists or for all player 1 choices
for (DistributionSet distrs : trans.get(i)) {
b2 = forall2; // there exists or for all player 2 choices
for (Distribution distr : distrs) {
b3 = distr.containsOneOf(v) && distr.isSubsetOf(u);
if (forall2) {
if (!b3)
b2 = false;
} else {
if (b3)
b2 = true;
}
}
if (forall1) {
if (!b2)
b1 = false;
} else {
if (b2)
b1 = true;
}
}
result.set(i, b1);
}
}
@Override
public void mvMultMinMax(double vect[], boolean min1, boolean min2, double result[], BitSet subset, boolean complement, int adv[])
{
for (int s : new IterableStateSet(subset, numStates, complement)) {
result[s] = mvMultMinMaxSingle(s, vect, min1, min2);
}
}
@Override
public double mvMultMinMaxSingle(int s, double vect[], boolean min1, boolean min2)
{
int k;
double d, prob, minmax1, minmax2;
boolean first1, first2;
ArrayList<DistributionSet> step;
minmax1 = 0;
first1 = true;
step = trans.get(s);
for (DistributionSet distrs : step) {
minmax2 = 0;
first2 = true;
for (Distribution distr : distrs) {
// Compute sum for this distribution
d = 0.0;
for (Map.Entry<Integer, Double> e : distr) {
k = (Integer) e.getKey();
prob = (Double) e.getValue();
d += prob * vect[k];
}
// Check whether we have exceeded min/max so far
if (first2 || (min2 && d < minmax2) || (!min2 && d > minmax2))
minmax2 = d;
first2 = false;
}
// Check whether we have exceeded min/max so far
if (first1 || (min1 && minmax2 < minmax1) || (!min1 && minmax2 > minmax1))
minmax1 = minmax2;
first1 = false;
}
return minmax1;
}
@Override
public List<Integer> mvMultMinMaxSingleChoices(int s, double vect[], boolean min1, boolean min2, double val)
{
int j, k;
double d, prob, minmax2;
boolean first2;
List<Integer> res;
ArrayList<DistributionSet> step;
// Create data structures to store strategy
res = new ArrayList<Integer>();
// One row of matrix-vector operation
j = -1;
step = trans.get(s);
for (DistributionSet distrs : step) {
j++;
minmax2 = 0;
first2 = true;
for (Distribution distr : distrs) {
// Compute sum for this distribution
d = 0.0;
for (Map.Entry<Integer, Double> e : distr) {
k = (Integer) e.getKey();
prob = (Double) e.getValue();
d += prob * vect[k];
}
// Check whether we have exceeded min/max so far
if (first2 || (min2 && d < minmax2) || (!min2 && d > minmax2))
minmax2 = d;
first2 = false;
}
// Store strategy info if value matches
//if (PrismUtils.doublesAreClose(val, d, termCritParam, termCrit == TermCrit.ABSOLUTE)) {
if (PrismUtils.doublesAreEqual(val, minmax2)) {
res.add(j);
//res.add(distrs.getAction());
}
}
return res;
}
@Override
public double mvMultGSMinMax(double vect[], boolean min1, boolean min2, BitSet subset, boolean complement, boolean absolute)
{
double d, diff, maxDiff = 0.0;
for (int s : new IterableStateSet(subset, numStates, complement)) {
d = mvMultJacMinMaxSingle(s, vect, min1, min2);
diff = absolute ? (Math.abs(d - vect[s])) : (Math.abs(d - vect[s]) / d);
maxDiff = diff > maxDiff ? diff : maxDiff;
vect[s] = d;
}
return maxDiff;
}
@Override
public double mvMultJacMinMaxSingle(int s, double vect[], boolean min1, boolean min2)
{
int k;
double diag, d, prob, minmax1, minmax2;
boolean first1, first2;
ArrayList<DistributionSet> step;
minmax1 = 0;
first1 = true;
step = trans.get(s);
for (DistributionSet distrs : step) {
minmax2 = 0;
first2 = true;
for (Distribution distr : distrs) {
diag = 1.0;
// Compute sum for this distribution
d = 0.0;
for (Map.Entry<Integer, Double> e : distr) {
k = (Integer) e.getKey();
prob = (Double) e.getValue();
if (k != s) {
d += prob * vect[k];
} else {
diag -= prob;
}
if (diag > 0)
d /= diag;
}
// Check whether we have exceeded min/max so far
if (first2 || (min2 && d < minmax2) || (!min2 && d > minmax2))
minmax2 = d;
first2 = false;
}
// Check whether we have exceeded min/max so far
if (first1 || (min1 && minmax2 < minmax1) || (!min1 && minmax2 > minmax1))
minmax1 = minmax2;
first1 = false;
}
return minmax1;
}
@Override
public void mvMultRewMinMax(double vect[], STPGRewards rewards, boolean min1, boolean min2, double result[], BitSet subset, boolean complement, int adv[])
{
for (int s : new IterableStateSet(subset, numStates, complement)) {
result[s] = mvMultRewMinMaxSingle(s, vect, rewards, min1, min2, adv);
}
}
@Override
public double mvMultRewMinMaxSingle(int s, double vect[], STPGRewards rewards, boolean min1, boolean min2, int adv[])
{
int dsIter, dIter, k;
double d, prob, minmax1, minmax2;
boolean first1, first2;
ArrayList<DistributionSet> step;
minmax1 = 0;
first1 = true;
dsIter = -1;
step = trans.get(s);
for (DistributionSet distrs : step) {
dsIter++;
minmax2 = 0;
first2 = true;
dIter = -1;
for (Distribution distr : distrs) {
dIter++;
// Compute sum for this distribution
d = rewards.getNestedTransitionReward(s, dsIter, dIter);
for (Map.Entry<Integer, Double> e : distr) {
k = (Integer) e.getKey();
prob = (Double) e.getValue();
d += prob * vect[k];
}
// Check whether we have exceeded min/max so far
if (first2 || (min2 && d < minmax2) || (!min2 && d > minmax2))
minmax2 = d;
first2 = false;
}
minmax2 += rewards.getTransitionReward(s, dsIter);
// Check whether we have exceeded min/max so far
if (first1 || (min1 && minmax2 < minmax1) || (!min1 && minmax2 > minmax1))
minmax1 = minmax2;
first1 = false;
}
return minmax1;
}
@Override
public List<Integer> mvMultRewMinMaxSingleChoices(int s, double vect[], STPGRewards rewards, boolean min1, boolean min2, double val)
{
int dsIter, dIter, k;
double d, prob, minmax2;
boolean first2;
List<Integer> res;
ArrayList<DistributionSet> step;
// Create data structures to store strategy
res = new ArrayList<Integer>();
// One row of matrix-vector operation
dsIter = -1;
step = trans.get(s);
for (DistributionSet distrs : step) {
dsIter++;
minmax2 = 0;
first2 = true;
dIter = -1;
for (Distribution distr : distrs) {
dIter++;
// Compute sum for this distribution
d = rewards.getNestedTransitionReward(s, dsIter, dIter);
for (Map.Entry<Integer, Double> e : distr) {
k = (Integer) e.getKey();
prob = (Double) e.getValue();
d += prob * vect[k];
}
// Check whether we have exceeded min/max so far
if (first2 || (min2 && d < minmax2) || (!min2 && d > minmax2))
minmax2 = d;
first2 = false;
}
minmax2 += rewards.getTransitionReward(s, dsIter);
// Store strategy info if value matches
//if (PrismUtils.doublesAreClose(val, d, termCritParam, termCrit == TermCrit.ABSOLUTE)) {
if (PrismUtils.doublesAreEqual(val, minmax2)) {
res.add(dsIter);
//res.add(distrs.getAction());
}
}
return res;
}
// Accessors (other)
/**
* Get the list of choices (distribution sets) for state s.
*/
public List<DistributionSet> getChoices(int s)
{
return trans.get(s);
}
/**
* Get the ith choice (distribution set) for state s.
*/
public DistributionSet getChoice(int s, int i)
{
return trans.get(s).get(i);
}
/**
* Get the total number of player 1 choices (distribution sets) over all states.
*/
public int getNumPlayer1Choices()
{
return numDistrSets;
}
/**
* Get the total number of player 2 choices (distributions) over all states.
*/
public int getNumPlayer2Choices()
{
return numDistrs;
}
/**
* Get the maximum number of player 1 choices (distribution sets) in any state.
*/
public int getMaxNumPlayer1Choices()
{
// TODO: Recompute if necessary
return maxNumDistrSets;
}
/**
* Get the maximum number of player 2 choices (distributions) in any state.
*/
public int getMaxNumPlayer2Choices()
{
// TODO: Recompute if necessary
return maxNumDistrs;
}
// Standard methods
// @Override // Move to superclass later
public String toStringGeneric()
{
// General purpose toString(), based on STPG access methods
int s, i, j, ni, nj;
boolean first, firsti, firstTr;
Iterator<Entry<Integer, Double>> it;
String str = "";
first = true;
str = "[ ";
for (s = 0; s < numStates; s++) {
if (first)
first = false;
else
str += ", ";
str += s + ": ";
ni = getNumChoices(s);
str += "[";
firsti = true;
for (i = 0; i < ni; i++) {
// Do non-nested choices
it = getTransitionsIterator(s, i);
if (it == null)
continue;
if (firsti)
firsti = false;
else
str += ", ";
str += "{";
firstTr = true;
while (it.hasNext()) {
Entry<Integer, Double> next = it.next();
if (firstTr)
firstTr = false;
else
str += ", ";
str += next.getKey() + "=" + next.getValue();
}
str += "}";
// Do nested choices
nj = getNumNestedChoices(s, i);
if (nj == 0)
continue;
if (firsti)
firsti = false;
else
str += ", ";
str += "[";
for (j = 0; j < nj; j++) {
it = getNestedTransitionsIterator(s, i, j);
if (it == null)
continue;
if (j > 0)
str += ", ";
str += "{";
firstTr = true;
while (it.hasNext()) {
Entry<Integer, Double> next = it.next();
if (firstTr)
firstTr = false;
else
str += ", ";
str += next.getKey() + "=" + next.getValue();
}
str += "}";
}
str += "]";
}
str += "]";
}
str += " ]";
return str;
}
@Override
public String toString()
{
// Custom toString()
int i;
boolean first;
String s = "";
first = true;
s = "[ ";
for (i = 0; i < numStates; i++) {
if (first)
first = false;
else
s += ", ";
s += i + ": " + trans.get(i);
}
s += " ]";
return s;
}
/**
* Equality check.
*/
public boolean equals(Object o)
{
if (o == null || !(o instanceof STPGAbstrSimple))
return false;
STPGAbstrSimple stpg = (STPGAbstrSimple) o;
if (numStates != stpg.numStates)
return false;
if (!initialStates.equals(stpg.initialStates))
return false;
if (!trans.equals(stpg.trans))
return false;
return true;
}
/**
* Simple test program
*/
public static void main(String args[])
{
STPGModelChecker mc;
STPGAbstrSimple stpg;
DistributionSet set;
Distribution distr;
//ModelCheckerResult res;
BitSet target;
// Simple example: Create and solve the stochastic game from:
// Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, David Parker
// A Game-based Abstraction-Refinement Framework for Markov Decision Processes
// Formal Methods in System Design 36(3): 246-280, 2010
try {
// Build game
stpg = new STPGAbstrSimple();
stpg.addStates(4);
// State 0 (s_0)
set = stpg.newDistributionSet(null);
distr = new Distribution();
distr.set(1, 1.0);
set.add(distr);
stpg.addDistributionSet(0, set);
// State 1 (s_1,s_2,s_3)
set = stpg.newDistributionSet(null);
distr = new Distribution();
distr.set(2, 1.0);
set.add(distr);
distr = new Distribution();
distr.set(1, 1.0);
set.add(distr);
stpg.addDistributionSet(1, set);
set = stpg.newDistributionSet(null);
distr = new Distribution();
distr.set(2, 0.5);
distr.set(3, 0.5);
set.add(distr);
distr = new Distribution();
distr.set(3, 1.0);
set.add(distr);
stpg.addDistributionSet(1, set);
// State 2 (s_4,s_5)
set = stpg.newDistributionSet(null);
distr = new Distribution();
distr.set(2, 1.0);
set.add(distr);
stpg.addDistributionSet(2, set);
// State 3 (s_6)
set = stpg.newDistributionSet(null);
distr = new Distribution();
distr.set(3, 1.0);
set.add(distr);
stpg.addDistributionSet(3, set);
// Print game
System.out.println(stpg);
// Model check
mc = new STPGModelChecker(null);
//mc.setVerbosity(2);
target = new BitSet();
target.set(3);
stpg.exportToDotFile("stpg.dot", target);
System.out.println("min min: " + mc.computeReachProbs(stpg, target, true, true).soln[0]);
System.out.println("max min: " + mc.computeReachProbs(stpg, target, false, true).soln[0]);
System.out.println("min max: " + mc.computeReachProbs(stpg, target, true, false).soln[0]);
System.out.println("max max: " + mc.computeReachProbs(stpg, target, false, false).soln[0]);
} catch (PrismException e) {
System.out.println(e);
}
}
}