You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

279 lines
13 KiB

//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
package explicit;
import java.util.BitSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map.Entry;
import explicit.rewards.MCRewards;
import explicit.rewards.MDPRewards;
/**
* Interface for classes that provide (read) access to an explicit-state MDP.
*/
public interface MDP extends NondetModel
{
/**
* Get the number of transitions from choice {@code i} of state {@code s}.
*/
public int getNumTransitions(int s, int i);
/**
* Get an iterator over the transitions from choice {@code i} of state {@code s}.
*/
public Iterator<Entry<Integer, Double>> getTransitionsIterator(int s, int i);
/**
* Perform a single step of precomputation algorithm Prob0, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all/some choices,
* there is a transition to a state in {@code u}.
* Quantification over choices is determined by {@code forall}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param forall For-all or there-exists (true=for-all, false=there-exists)
* @param result Store results here
*/
public void prob0step(BitSet subset, BitSet u, boolean forall, BitSet result);
/**
* Perform a single step of precomputation algorithm Prob1A, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all choices,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param result Store results here
*/
public void prob1Astep(BitSet subset, BitSet u, BitSet v, BitSet result);
/**
* Perform a single step of precomputation algorithm Prob1E, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for some choice,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* Optionally, store optimal (memoryless) strategy info for 1 states.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param result Store results here
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public void prob1Estep(BitSet subset, BitSet u, BitSet v, BitSet result, int strat[]);
/**
* Perform a single step of precomputation algorithm Prob1, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all/some choices,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* Quantification over choices is determined by {@code forall}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param forall For-all or there-exists (true=for-all, false=there-exists)
* @param result Store results here
*/
public void prob1step(BitSet subset, BitSet u, BitSet v, boolean forall, BitSet result);
/**
* Perform a single step of precomputation algorithm Prob1 for a single state/choice,
* i.e., return whether there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* @param s State (row) index
* @param i Choice index
* @param u Set of states {@code u}
* @param v Set of states {@code v}
*/
public boolean prob1stepSingle(int s, int i, BitSet u, BitSet v);
/**
* Do a matrix-vector multiplication followed by min/max, i.e. one step of value iteration,
* i.e. for all s: result[s] = min/max_k { sum_j P_k(s,j)*vect[j] }
* Optionally, store optimal (memoryless) strategy info.
* @param vect Vector to multiply by
* @param min Min or max for (true=min, false=max)
* @param result Vector to store result in
* @param subset Only do multiplication for these rows (ignored if null)
* @param complement If true, {@code subset} is taken to be its complement (ignored if {@code subset} is null)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public void mvMultMinMax(double vect[], boolean min, double result[], BitSet subset, boolean complement, int strat[]);
/**
* Do a single row of matrix-vector multiplication followed by min/max,
* i.e. return min/max_k { sum_j P_k(s,j)*vect[j] }
* Optionally, store optimal (memoryless) strategy info.
* @param s Row index
* @param vect Vector to multiply by
* @param min Min or max for (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public double mvMultMinMaxSingle(int s, double vect[], boolean min, int strat[]);
/**
* Determine which choices result in min/max after a single row of matrix-vector multiplication.
* @param s Row index
* @param vect Vector to multiply by
* @param min Min or max (true=min, false=max)
* @param val Min or max value to match
*/
public List<Integer> mvMultMinMaxSingleChoices(int s, double vect[], boolean min, double val);
/**
* Do a single row of matrix-vector multiplication for a specific choice.
* @param s State (row) index
* @param i Choice index
* @param vect Vector to multiply by
*/
public double mvMultSingle(int s, int i, double vect[]);
/**
* Do a Gauss-Seidel-style matrix-vector multiplication followed by min/max.
* i.e. for all s: vect[s] = min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) }
* and store new values directly in {@code vect} as computed.
* The maximum (absolute/relative) difference between old/new
* elements of {@code vect} is also returned.
* Optionally, store optimal (memoryless) strategy info.
* @param vect Vector to multiply by (and store the result in)
* @param min Min or max for (true=min, false=max)
* @param subset Only do multiplication for these rows (ignored if null)
* @param complement If true, {@code subset} is taken to be its complement (ignored if {@code subset} is null)
* @param absolute If true, compute absolute, rather than relative, difference
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
* @return The maximum difference between old/new elements of {@code vect}
*/
public double mvMultGSMinMax(double vect[], boolean min, BitSet subset, boolean complement, boolean absolute, int strat[]);
/**
* Do a single row of Jacobi-style matrix-vector multiplication followed by min/max.
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) }
* Optionally, store optimal (memoryless) strategy info.
* @param s Row index
* @param vect Vector to multiply by
* @param min Min or max for (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public double mvMultJacMinMaxSingle(int s, double vect[], boolean min, int strat[]);
/**
* Do a single row of Jacobi-style matrix-vector multiplication for a specific choice.
* i.e. return min/max_k { (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) }
* @param s Row index
* @param i Choice index
* @param vect Vector to multiply by
*/
public double mvMultJacSingle(int s, int i, double vect[]);
/**
* Do a matrix-vector multiplication and sum of rewards followed by min/max, i.e. one step of value iteration.
* i.e. for all s: result[s] = min/max_k { rew(s) + rew_k(s) + sum_j P_k(s,j)*vect[j] }
* Optionally, store optimal (memoryless) strategy info.
* @param vect Vector to multiply by
* @param mdpRewards The rewards
* @param min Min or max for (true=min, false=max)
* @param result Vector to store result in
* @param subset Only do multiplication for these rows (ignored if null)
* @param complement If true, {@code subset} is taken to be its complement (ignored if {@code subset} is null)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public void mvMultRewMinMax(double vect[], MDPRewards mdpRewards, boolean min, double result[], BitSet subset, boolean complement, int strat[]);
/**
* Do a single row of matrix-vector multiplication and sum of rewards followed by min/max.
* i.e. return min/max_k { rew(s) + rew_k(s) + sum_j P_k(s,j)*vect[j] }
* Optionally, store optimal (memoryless) strategy info.
* @param s Row index
* @param vect Vector to multiply by
* @param mdpRewards The rewards
* @param min Min or max for (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public double mvMultRewMinMaxSingle(int s, double vect[], MDPRewards mdpRewards, boolean min, int strat[]);
/**
* Do a single row of matrix-vector multiplication and sum of rewards for a specific choice.
* i.e. rew(s) + rew_k(s) + sum_j P_k(s,j)*vect[j]
* @param s State (row) index
* @param i Choice index
* @param vect Vector to multiply by
* @param mcRewards The rewards
*/
public double mvMultRewSingle(int s, int i, double vect[], MCRewards mcRewards);
/**
* Do a Gauss-Seidel-style matrix-vector multiplication and sum of rewards followed by min/max.
* i.e. for all s: vect[s] = min/max_k { rew(s) + rew_k(s) + (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) }
* and store new values directly in {@code vect} as computed.
* The maximum (absolute/relative) difference between old/new
* elements of {@code vect} is also returned.
* Optionally, store optimal (memoryless) strategy info.
* @param vect Vector to multiply by (and store the result in)
* @param mdpRewards The rewards
* @param min Min or max for (true=min, false=max)
* @param subset Only do multiplication for these rows (ignored if null)
* @param complement If true, {@code subset} is taken to be its complement (ignored if {@code subset} is null)
* @param absolute If true, compute absolute, rather than relative, difference
* @return The maximum difference between old/new elements of {@code vect}
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public double mvMultRewGSMinMax(double vect[], MDPRewards mdpRewards, boolean min, BitSet subset, boolean complement, boolean absolute, int strat[]);
/**
* Do a single row of Jacobi-style matrix-vector multiplication and sum of rewards followed by min/max.
* i.e. return min/max_k { rew(s) + rew_k(s) + (sum_{j!=s} P_k(s,j)*vect[j]) / 1-P_k(s,s) }
* Optionally, store optimal (memoryless) strategy info.
* @param s State (row) index
* @param vect Vector to multiply by
* @param mdpRewards The rewards
* @param min Min or max for (true=min, false=max)
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public double mvMultRewJacMinMaxSingle(int s, double vect[], MDPRewards mdpRewards, boolean min, int strat[]);
/**
* Determine which choices result in min/max after a single row of matrix-vector multiplication and sum of rewards.
* @param s State (row) index
* @param vect Vector to multiply by
* @param mdpRewards The rewards
* @param min Min or max (true=min, false=max)
* @param val Min or max value to match
*/
public List<Integer> mvMultRewMinMaxSingleChoices(int s, double vect[], MDPRewards mdpRewards, boolean min, double val);
/**
* Multiply the probability matrix induced by the MDP and {@code strat}
* to the right of {@code source}. Only those entries in {@code source}
* and only those columns in the probability matrix are considered, that
* are elements of {@code states}.
*
* The result of this multiplication is added to the contents of {@code dest}.
*
* @param states States for which to multiply
* @param strat (Memoryless) strategy to use
* @param source Vector to multiply matrix with
* @param dest Vector to write result to.
*/
public void mvMultRight(int[] states, int[] strat, double[] source, double[] dest);
}