//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford, formerly University of Birmingham) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== // includes #include "PrismSparse.h" #include #include #include #include #include #include #include #include "sparse.h" #include "PrismSparseGlob.h" #include "jnipointer.h" #include //------------------------------------------------------------------------------ JNIEXPORT jlong __jlongpointer JNICALL Java_sparse_PrismSparse_PS_1ProbTransient ( JNIEnv *env, jclass cls, jlong __jlongpointer tr, // trans matrix jlong __jlongpointer od, // odd jlong __jlongpointer in, // initial distribution (note: this will be deleted afterwards) jlong __jlongpointer rv, // row vars jint num_rvars, jlong __jlongpointer cv, // col vars jint num_cvars, jint time // time ) { // cast function parameters DdNode *trans = jlong_to_DdNode(tr); // trans matrix ODDNode *odd = jlong_to_ODDNode(od); // odd double *init = jlong_to_double(in); // initial distribution DdNode **rvars = jlong_to_DdNode_array(rv); // row vars DdNode **cvars = jlong_to_DdNode_array(cv); // col vars // model stats int n; long nnz; // flags bool compact_tr; // sparse matrix CMSparseMatrix *cmsm = NULL; CMSCSparseMatrix *cmscsm = NULL; // vectors double *soln = NULL, *soln2 = NULL, *tmpsoln = NULL; // timing stuff long start1, start2, start3, stop; double time_taken, time_for_setup, time_for_iters; // misc bool done; int i, j, l, h, iters; double d, x, sup_norm, kb, kbt; // exception handling around whole function try { // start clocks start1 = start2 = util_cpu_time(); // get number of states n = odd->eoff + odd->toff; // build sparse matrix PS_PrintToMainLog(env, "\nBuilding sparse matrix... "); // if requested, try and build a "compact" version compact_tr = true; cmscsm = NULL; if (compact) cmscsm = build_cmsc_sparse_matrix(ddman, trans, rvars, cvars, num_rvars, odd); if (cmscsm != NULL) { nnz = cmscsm->nnz; kb = cmscsm->mem; } // if not or if it wasn't possible, built a normal one else { compact_tr = false; cmsm = build_cm_sparse_matrix(ddman, trans, rvars, cvars, num_rvars, odd); nnz = cmsm->nnz; kb = cmsm->mem; } kbt = kb; // print some info PS_PrintToMainLog(env, "[n=%d, nnz=%d%s] ", n, nnz, compact_tr?", compact":""); PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // create solution/iteration vectors PS_PrintToMainLog(env, "Allocating iteration vectors... "); // for soln, we just use init (since we are free to modify/delete this vector) // we also report the memory usage of this vector here, even though it has already been created soln = init; soln2 = new double[n]; kb = n*8.0/1024.0; kbt += 2*kb; PS_PrintMemoryToMainLog(env, "[2 x ", kb, "]\n"); // print total memory usage PS_PrintMemoryToMainLog(env, "TOTAL: [", kbt, "]\n"); // get setup time stop = util_cpu_time(); time_for_setup = (double)(stop - start2)/1000; start2 = stop; start3 = stop; // start iterations iters = 0; done = false; PS_PrintToMainLog(env, "\nStarting iterations...\n"); // note that we ignore max_iters as we know how any iterations _should_ be performed for (iters = 0; iters < time && !done; iters++) { // store local copies of stuff double *non_zeros; unsigned char *col_counts; int *col_starts; bool use_counts; unsigned int *rows; double *dist; int dist_shift; int dist_mask; if (!compact_tr) { non_zeros = cmsm->non_zeros; col_counts = cmsm->col_counts; col_starts = (int *)cmsm->col_counts; use_counts = cmsm->use_counts; rows = cmsm->rows; } else { col_counts = cmscsm->col_counts; col_starts = (int *)cmscsm->col_counts; use_counts = cmscsm->use_counts; rows = cmscsm->rows; dist = cmscsm->dist; dist_shift = cmscsm->dist_shift; dist_mask = cmscsm->dist_mask; } // do matrix vector multiply bit h = 0; for (i = 0; i < n; i++) { d = 0.0; if (!use_counts) { l = col_starts[i]; h = col_starts[i+1]; } else { l = h; h += col_counts[i]; } // "column major" version if (!compact_tr) { for (j = l; j < h; j++) { d += non_zeros[j] * soln[rows[j]]; } // "compact msc" version } else { for (j = l; j < h; j++) { d += dist[(int)(rows[j] & dist_mask)] * soln[(int)(rows[j] >> dist_shift)]; } } // set vector element soln2[i] = d; } // check for steady state convergence if (do_ss_detect) { sup_norm = 0.0; for (i = 0; i < n; i++) { x = fabs(soln2[i] - soln[i]); if (term_crit == TERM_CRIT_RELATIVE) { x /= soln2[i]; } if (x > sup_norm) sup_norm = x; } if (sup_norm < term_crit_param) { done = true; } } // print occasional status update if ((util_cpu_time() - start3) > UPDATE_DELAY) { PS_PrintToMainLog(env, "Iteration %d (of %d): ", iters, time); if (do_ss_detect) PS_PrintToMainLog(env, "max %sdiff=%f, ", (term_crit == TERM_CRIT_RELATIVE)?"relative ":"", sup_norm); PS_PrintToMainLog(env, "%.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000)); start3 = util_cpu_time(); } // prepare for next iteration tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // stop clocks stop = util_cpu_time(); time_for_iters = (double)(stop - start2)/1000; time_taken = (double)(stop - start1)/1000; // print iters/timing info if (done) PS_PrintToMainLog(env, "\nSteady state detected at iteration %d\n", iters); PS_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup); // catch exceptions: register error, free memory } catch (std::bad_alloc e) { PS_SetErrorMessage("Out of memory"); if (soln) delete[] soln; soln = 0; } // free memory if (cmsm) delete cmsm; if (cmscsm) delete cmscsm; if (soln2) delete[] soln2; return ptr_to_jlong(soln); } //------------------------------------------------------------------------------