// self stabilisation algorithm Beauquier, Gradinariu and Johnen // gxn/dxp 18/07/02 // model is an mdp nondeterministic // module of process 1 module process1 d1 : bool; // probabilistic variable p1 : bool; // deterministic variable [] (d1=d9) & (p1=p9) -> 0.5 : (d1'=!d1) & (p1'=p1) + 0.5 : (d1'=!d1) & (p1'=!p1); [] (d1=d9) & !(p1=p9) -> (d1'=!d1); endmodule // add further processes through renaming module process2 =process1[p1=p2 ,p9=p1, d1=d2 ,d9=d1] endmodule module process3 =process1[p1=p3 ,p9=p2, d1=d3 ,d9=d2] endmodule module process4 =process1[p1=p4 ,p9=p3, d1=d4 ,d9=d3] endmodule module process5 =process1[p1=p5 ,p9=p4, d1=d5 ,d9=d4] endmodule module process6 =process1[p1=p6 ,p9=p5, d1=d6 ,d9=d5] endmodule module process7 =process1[p1=p7 ,p9=p6, d1=d7 ,d9=d6] endmodule module process8 =process1[p1=p8 ,p9=p7, d1=d8 ,d9=d7] endmodule module process9 =process1[p1=p9 ,p9=p8, d1=d9 ,d9=d8] endmodule // cost in any state is 1 (expected number of steps) rewards true : 1; endrewards // initial states - any state with more than 1 token, that is all states init true endinit