//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford) // * Vojtech Forejt (University of Oxford) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== package explicit; import java.util.*; import parser.ast.Expression; import parser.ast.ExpressionTemporal; import prism.*; import explicit.rewards.STPGRewards; /** * Explicit-state model checker for two-player stochastic games (STPGs). */ public class STPGModelChecker extends ProbModelChecker { // Model checking functions /** * Compute probabilities for the contents of a P operator. */ protected StateValues checkProbPathFormula(Model model, Expression expr, boolean min1, boolean min2) throws PrismException { // Test whether this is a simple path formula (i.e. PCTL) // and then pass control to appropriate method. if (expr.isSimplePathFormula()) { return checkProbPathFormulaSimple(model, expr, min1, min2); } else { throw new PrismException("Explicit engine does not yet handle LTL-style path formulas"); } } /** * Compute probabilities for a simple, non-LTL path operator. */ protected StateValues checkProbPathFormulaSimple(Model model, Expression expr, boolean min1, boolean min2) throws PrismException { StateValues probs = null; // Temporal operators if (expr instanceof ExpressionTemporal) { ExpressionTemporal exprTemp = (ExpressionTemporal) expr; // Until if (exprTemp.getOperator() == ExpressionTemporal.P_U) { if (exprTemp.hasBounds()) { probs = checkProbBoundedUntil(model, exprTemp, min1, min2); } else { probs = checkProbUntil(model, exprTemp, min1, min2); } } // Anything else - convert to until and recurse else { probs = checkProbPathFormulaSimple(model, exprTemp.convertToUntilForm(), min1, min2); } } if (probs == null) throw new PrismException("Unrecognised path operator in P operator"); return probs; } /** * Compute probabilities for a bounded until operator. */ protected StateValues checkProbBoundedUntil(Model model, ExpressionTemporal expr, boolean min1, boolean min2) throws PrismException { int time; BitSet b1, b2; StateValues probs = null; ModelCheckerResult res = null; // get info from bounded until time = expr.getUpperBound().evaluateInt(constantValues); if (expr.upperBoundIsStrict()) time--; if (time < 0) { String bound = expr.upperBoundIsStrict() ? "<" + (time + 1) : "<=" + time; throw new PrismException("Invalid bound " + bound + " in bounded until formula"); } // model check operands first b1 = checkExpression(model, expr.getOperand1()).getBitSet(); b2 = checkExpression(model, expr.getOperand2()).getBitSet(); // print out some info about num states // mainLog.print("\nb1 = " + JDD.GetNumMintermsString(b1, // allDDRowVars.n())); // mainLog.print(" states, b2 = " + JDD.GetNumMintermsString(b2, // allDDRowVars.n()) + " states\n"); // Compute probabilities // a trivial case: "U<=0" if (time == 0) { // prob is 1 in b2 states, 0 otherwise probs = StateValues.createFromBitSetAsDoubles(b2, model); } else { res = computeBoundedUntilProbs((STPG) model, b1, b2, time, min1, min2); probs = StateValues.createFromDoubleArray(res.soln, model); } return probs; } /** * Compute probabilities for an (unbounded) until operator. */ protected StateValues checkProbUntil(Model model, ExpressionTemporal expr, boolean min1, boolean min2) throws PrismException { BitSet b1, b2; StateValues probs = null; ModelCheckerResult res = null; // model check operands first b1 = checkExpression(model, expr.getOperand1()).getBitSet(); b2 = checkExpression(model, expr.getOperand2()).getBitSet(); // print out some info about num states // mainLog.print("\nb1 = " + JDD.GetNumMintermsString(b1, // allDDRowVars.n())); // mainLog.print(" states, b2 = " + JDD.GetNumMintermsString(b2, // allDDRowVars.n()) + " states\n"); res = computeUntilProbs((STPG) model, b1, b2, min1, min2); probs = StateValues.createFromDoubleArray(res.soln, model); return probs; } /** * Compute rewards for the contents of an R operator. */ protected StateValues checkRewardFormula(Model model, STPGRewards rewards, ExpressionTemporal expr, boolean min1, boolean min2) throws PrismException { // Assume R [F ] for now... BitSet target; StateValues rews = null; ModelCheckerResult res = null; // model check operands first target = checkExpression(model, expr.getOperand2()).getBitSet(); res = computeReachRewards((STPG) model, rewards, target, min1, min2); rews = StateValues.createFromDoubleArray(res.soln, model); return rews; } // Numerical computation functions /** * Compute reachability probabilities. * i.e. compute the min/max probability of reaching a state in {@code target}. * @param stpg The STPG * @param target Target states * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) */ public ModelCheckerResult computeReachProbs(STPG stpg, BitSet target, boolean min1, boolean min2) throws PrismException { return computeReachProbs(stpg, null, target, min1, min2, null, null); } /** * Compute until probabilities. * i.e. compute the min/max probability of reaching a state in {@code target}, * while remaining in those in @{code remain}. * @param stpg The STPG * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) */ public ModelCheckerResult computeUntilProbs(STPG stpg, BitSet remain, BitSet target, boolean min1, boolean min2) throws PrismException { return computeReachProbs(stpg, remain, target, min1, min2, null, null); } /** * Compute reachability/until probabilities. * i.e. compute the min/max probability of reaching a state in {@code target}, * while remaining in those in @{code remain}. * @param stpg The STPG * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) * @param init Optionally, an initial solution vector (may be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ public ModelCheckerResult computeReachProbs(STPG stpg, BitSet remain, BitSet target, boolean min1, boolean min2, double init[], BitSet known) throws PrismException { ModelCheckerResult res = null; BitSet no, yes; int i, n, numYes, numNo; long timer, timerProb0, timerProb1; boolean genAdv; // Check for some unsupported combinations if (solnMethod == SolnMethod.VALUE_ITERATION && valIterDir == ValIterDir.ABOVE && !(precomp && prob0)) { throw new PrismException("Precomputation (Prob0) must be enabled for value iteration from above"); } // Are we generating an optimal adversary? genAdv = exportAdv; // Start probabilistic reachability timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting probabilistic reachability..."); // Check for deadlocks in non-target state (because breaks e.g. prob1) stpg.checkForDeadlocks(target); // Store num states n = stpg.getNumStates(); // Optimise by enlarging target set (if more info is available) if (init != null && known != null) { BitSet targetNew = new BitSet(n); for (i = 0; i < n; i++) { targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 1.0)); } target = targetNew; } // Precomputation timerProb0 = System.currentTimeMillis(); if (precomp && prob0) { no = prob0(stpg, remain, target, min1, min2); } else { no = new BitSet(); } timerProb0 = System.currentTimeMillis() - timerProb0; timerProb1 = System.currentTimeMillis(); if (precomp && prob1 && !genAdv) { yes = prob1(stpg, remain, target, min1, min2); } else { yes = (BitSet) target.clone(); } timerProb1 = System.currentTimeMillis() - timerProb1; // Print results of precomputation numYes = yes.cardinality(); numNo = no.cardinality(); if (verbosity >= 1) mainLog.println("target=" + target.cardinality() + ", yes=" + numYes + ", no=" + numNo + ", maybe=" + (n - (numYes + numNo))); // Compute probabilities switch (solnMethod) { case VALUE_ITERATION: res = computeReachProbsValIter(stpg, no, yes, min1, min2, init, known); break; case GAUSS_SEIDEL: res = computeReachProbsGaussSeidel(stpg, no, yes, min1, min2, init, known); break; default: throw new PrismException("Unknown STPG solution method " + solnMethod); } // Finished probabilistic reachability timer = System.currentTimeMillis() - timer; if (verbosity >= 1) mainLog.println("Probabilistic reachability took " + timer / 1000.0 + " seconds."); // Update time taken res.timeTaken = timer / 1000.0; res.timeProb0 = timerProb0 / 1000.0; res.timePre = (timerProb0 + timerProb1) / 1000.0; return res; } /** * Prob0 precomputation algorithm. * i.e. determine the states of an STPG which, with min/max probability 0, * reach a state in {@code target}, while remaining in those in @{code remain}. * {@code min}=true gives Prob0E, {@code min}=false gives Prob0A. * @param stpg The STPG * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) */ public BitSet prob0(STPG stpg, BitSet remain, BitSet target, boolean min1, boolean min2) { int n, iters; BitSet u, soln, unknown; boolean u_done; long timer; // Start precomputation timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting Prob0 (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")..."); // Special case: no target states if (target.cardinality() == 0) { soln = new BitSet(stpg.getNumStates()); soln.set(0, stpg.getNumStates()); return soln; } // Initialise vectors n = stpg.getNumStates(); u = new BitSet(n); soln = new BitSet(n); // Determine set of states actually need to perform computation for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); if (remain != null) unknown.and(remain); // Fixed point loop iters = 0; u_done = false; // Least fixed point - should start from 0 but we optimise by // starting from 'target', thus bypassing first iteration u.or(target); soln.or(target); while (!u_done) { iters++; // Single step of Prob0 stpg.prob0step(unknown, u, min1, min2, soln); // Check termination u_done = soln.equals(u); // u = soln u.clear(); u.or(soln); } // Negate u.flip(0, n); // Finished precomputation timer = System.currentTimeMillis() - timer; if (verbosity >= 1) { mainLog.print("Prob0 (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); } return u; } /** * Prob1 precomputation algorithm. * i.e. determine the states of an STPG which, with min/max probability 1, * reach a state in {@code target}, while remaining in those in @{code remain}. * @param stpg The STPG * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) */ public BitSet prob1(STPG stpg, BitSet remain, BitSet target, boolean min1, boolean min2) { int n, iters; BitSet u, v, soln, unknown; boolean u_done, v_done; long timer; // Start precomputation timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting Prob1 (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")..."); // Special case: no target states if (target.cardinality() == 0) { return new BitSet(stpg.getNumStates()); } // Initialise vectors n = stpg.getNumStates(); u = new BitSet(n); v = new BitSet(n); soln = new BitSet(n); // Determine set of states actually need to perform computation for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); if (remain != null) unknown.and(remain); // Nested fixed point loop iters = 0; u_done = false; // Greatest fixed point u.set(0, n); while (!u_done) { v_done = false; // Least fixed point - should start from 0 but we optimise by // starting from 'target', thus bypassing first iteration v.clear(); v.or(target); soln.clear(); soln.or(target); while (!v_done) { iters++; // Single step of Prob1 stpg.prob1step(unknown, u, v, min1, min2, soln); // Check termination (inner) v_done = soln.equals(v); // v = soln v.clear(); v.or(soln); } // Check termination (outer) u_done = v.equals(u); // u = v u.clear(); u.or(v); } // Finished precomputation timer = System.currentTimeMillis() - timer; if (verbosity >= 1) { mainLog.print("Prob1 (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); } return u; } /** * Compute reachability probabilities using value iteration. * @param stpg The STPG * @param no Probability 0 states * @param yes Probability 1 states * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachProbsValIter(STPG stpg, BitSet no, BitSet yes, boolean min1, boolean min2, double init[], BitSet known) throws PrismException { ModelCheckerResult res = null; BitSet unknown; int i, n, iters; double soln[], soln2[], tmpsoln[], initVal; int adv[] = null; boolean genAdv, done; long timer; // Are we generating an optimal adversary? genAdv = exportAdv; // Start value iteration timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")..."); // Store num states n = stpg.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal // where initVal is 0.0 or 1.0, depending on whether we converge from below/above. initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0; if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(yes); unknown.andNot(no); if (known != null) unknown.andNot(known); // Create/initialise adversary storage if (genAdv) { adv = new int[n]; for (i = 0; i < n; i++) { adv[i] = -1; } } // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply and min/max ops stpg.mvMultMinMax(soln, min1, min2, soln2, unknown, false, genAdv ? adv : null); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; if (verbosity >= 1) { mainLog.print("Value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); } // Non-convergence is an error if (!done) { String msg = "Iterative method did not converge within " + iters + " iterations."; msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; throw new PrismException(msg); } // Print adversary if (genAdv) { PrismLog out = new PrismFileLog(exportAdvFilename); for (i = 0; i < n; i++) { out.println(i + " " + (adv[i] != -1 ? stpg.getAction(i, adv[i]) : "-")); } out.println(); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute reachability probabilities using Gauss-Seidel. * @param stpg The STPG * @param no Probability 0 states * @param yes Probability 1 states * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachProbsGaussSeidel(STPG stpg, BitSet no, BitSet yes, boolean min1, boolean min2, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], initVal, maxDiff; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")..."); // Store num states n = stpg.getNumStates(); // Create solution vector soln = (init == null) ? new double[n] : init; // Initialise solution vector. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal // where initVal is 0.0 or 1.0, depending on whether we converge from below/above. initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0; if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(yes); unknown.andNot(no); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply and min/max ops maxDiff = stpg.mvMultGSMinMax(soln, min1, min2, unknown, false, termCrit == TermCrit.ABSOLUTE); // Check termination done = maxDiff < termCritParam; } // Finished Gauss-Seidel timer = System.currentTimeMillis() - timer; if (verbosity >= 1) { mainLog.print("Value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); } // Non-convergence is an error if (!done) { String msg = "Iterative method did not converge within " + iters + " iterations."; msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; throw new PrismException(msg); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Construct strategy information for min/max reachability probabilities. * (More precisely, list of indices of player 1 choices resulting in min/max.) * (Note: indices are guaranteed to be sorted in ascending order.) * @param stpg The STPG * @param state The state to generate strategy info for * @param target The set of target states to reach * @param min1 Min or max probabilities for player 1 (true=min, false=max) * @param min2 Min or max probabilities for player 2 (true=min, false=max) * @param lastSoln Vector of probabilities from which to recompute in one iteration */ public List probReachStrategy(STPG stpg, int state, BitSet target, boolean min1, boolean min2, double lastSoln[]) throws PrismException { double val = stpg.mvMultMinMaxSingle(state, lastSoln, min1, min2); return stpg.mvMultMinMaxSingleChoices(state, lastSoln, min1, min2, val); } /** * Compute bounded reachability probabilities. * i.e. compute the min/max probability of reaching a state in {@code target} within k steps. * @param stpg The STPG * @param target Target states * @param k Bound * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) */ public ModelCheckerResult computeBoundedReachProbs(STPG stpg, BitSet target, int k, boolean min1, boolean min2) throws PrismException { return computeBoundedReachProbs(stpg, null, target, k, min1, min2, null, null); } /** * Compute bounded until probabilities. * i.e. compute the min/max probability of reaching a state in {@code target}, * within k steps, and while remaining in states in @{code remain}. * @param stpg The STPG * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param k Bound * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) */ public ModelCheckerResult computeBoundedUntilProbs(STPG stpg, BitSet remain, BitSet target, int k, boolean min1, boolean min2) throws PrismException { return computeBoundedReachProbs(stpg, remain, target, k, min1, min2, null, null); } /** * Compute bounded reachability/until probabilities. * i.e. compute the min/max probability of reaching a state in {@code target}, * within k steps, and while remaining in states in @{code remain}. * @param stpg The STPG * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param k Bound * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound) * @param min2 Min or max probabilities for player 2 (true=min, false=max) * @param init Initial solution vector - pass null for default * @param results Optional array of size k+1 to store (init state) results for each step (null if unused) */ public ModelCheckerResult computeBoundedReachProbs(STPG stpg, BitSet remain, BitSet target, int k, boolean min1, boolean min2, double init[], double results[]) throws PrismException { // TODO: implement until ModelCheckerResult res = null; int i, n, iters; double soln[], soln2[], tmpsoln[]; long timer; // Start bounded probabilistic reachability timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting bounded probabilistic reachability..."); // Store num states n = stpg.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use passed in initial vector, if present if (init != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0; } // Store intermediate results if required // (compute min/max value over initial states for first step) if (results != null) { results[0] = Utils.minMaxOverArraySubset(soln2, stpg.getInitialStates(), min2); } // Start iterations iters = 0; while (iters < k) { iters++; // Matrix-vector multiply and min/max ops stpg.mvMultMinMax(soln, min1, min2, soln2, target, true, null); // Store intermediate results if required // (compute min/max value over initial states for this step) if (results != null) { results[iters] = Utils.minMaxOverArraySubset(soln2, stpg.getInitialStates(), min2); } // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Print vector (for debugging) //mainLog.println(soln); // Finished bounded probabilistic reachability timer = System.currentTimeMillis() - timer; if (verbosity >= 1) { mainLog.print("Bounded probabilistic reachability (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.lastSoln = soln2; res.numIters = iters; res.timeTaken = timer / 1000.0; res.timePre = 0.0; return res; } /** * Compute expected reachability rewards. * @param stpg The STPG * @param rewards The rewards * @param target Target states * @param min1 Min or max rewards for player 1 (true=min, false=max) * @param min2 Min or max rewards for player 2 (true=min, false=max) */ public ModelCheckerResult computeReachRewards(STPG stpg, STPGRewards rewards, BitSet target, boolean min1, boolean min2) throws PrismException { return computeReachRewards(stpg, rewards, target, min1, min2, null, null); } /** * Compute expected reachability rewards. * i.e. compute the min/max reward accumulated to reach a state in {@code target}. * @param stpg The STPG * @param rewards The rewards * @param target Target states * @param min1 Min or max rewards for player 1 (true=min, false=max) * @param min2 Min or max rewards for player 2 (true=min, false=max) * @param init Optionally, an initial solution vector (may be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ public ModelCheckerResult computeReachRewards(STPG stpg, STPGRewards rewards, BitSet target, boolean min1, boolean min2, double init[], BitSet known) throws PrismException { ModelCheckerResult res = null; BitSet inf; int i, n, numTarget, numInf; long timer, timerProb1; // Start expected reachability timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting expected reachability..."); // Check for deadlocks in non-target state (because breaks e.g. prob1) stpg.checkForDeadlocks(target); // Store num states n = stpg.getNumStates(); // Optimise by enlarging target set (if more info is available) if (init != null && known != null) { BitSet targetNew = new BitSet(n); for (i = 0; i < n; i++) { targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 0.0)); } target = targetNew; } // Precomputation (not optional) timerProb1 = System.currentTimeMillis(); inf = prob1(stpg, null, target, !min1, !min2); inf.flip(0, n); timerProb1 = System.currentTimeMillis() - timerProb1; // Print results of precomputation numTarget = target.cardinality(); numInf = inf.cardinality(); if (verbosity >= 1) mainLog.println("target=" + numTarget + ", inf=" + numInf + ", rest=" + (n - (numTarget + numInf))); // Compute rewards switch (solnMethod) { case VALUE_ITERATION: res = computeReachRewardsValIter(stpg, rewards, target, inf, min1, min2, init, known); break; default: throw new PrismException("Unknown STPG solution method " + solnMethod); } // Finished expected reachability timer = System.currentTimeMillis() - timer; if (verbosity >= 1) mainLog.println("Expected reachability took " + timer / 1000.0 + " seconds."); // Update time taken res.timeTaken = timer / 1000.0; res.timePre = timerProb1 / 1000.0; return res; } /** * Compute expected reachability rewards using value iteration. * @param stpg The STPG * @param rewards The rewards * @param target Target states * @param inf States for which reward is infinite * @param min1 Min or max rewards for player 1 (true=min, false=max) * @param min2 Min or max rewards for player 2 (true=min, false=max) * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachRewardsValIter(STPG stpg, STPGRewards rewards, BitSet target, BitSet inf, boolean min1, boolean min2, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], soln2[], tmpsoln[]; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); if (verbosity >= 1) mainLog.println("Starting value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")..."); // Store num states n = stpg.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0 if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); unknown.andNot(inf); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { //mainLog.println(soln); iters++; // Matrix-vector multiply and min/max ops stpg.mvMultRewMinMax(soln, rewards, min1, min2, soln2, unknown, false, null); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; if (verbosity >= 1) { mainLog.print("Value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); } // Non-convergence is an error if (!done) { String msg = "Iterative method did not converge within " + iters + " iterations."; msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; throw new PrismException(msg); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Simple test program. */ public static void main(String args[]) { STPGModelChecker mc; STPGAbstrSimple stpg; ModelCheckerResult res; BitSet target; Map labels; boolean min1 = true, min2 = true; try { mc = new STPGModelChecker(); stpg = new STPGAbstrSimple(); stpg.buildFromPrismExplicit(args[0]); //System.out.println(stpg); labels = mc.loadLabelsFile(args[1]); //System.out.println(labels); target = labels.get(args[2]); if (target == null) throw new PrismException("Unknown label \"" + args[2] + "\""); for (int i = 3; i < args.length; i++) { if (args[i].equals("-minmin")) { min1 = true; min2 = true; } else if (args[i].equals("-maxmin")) { min1 = false; min2 = true; } else if (args[i].equals("-minmax")) { min1 = true; min2 = false; } else if (args[i].equals("-maxmax")) { min1 = false; min2 = false; } } //stpg.exportToDotFile("stpg.dot", target); //stpg.exportToPrismExplicit("stpg"); res = mc.computeReachProbs(stpg, target, min1, min2); System.out.println(res.soln[0]); } catch (PrismException e) { System.out.println(e); } } }