//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford, formerly University of Birmingham) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== // includes #include "PrismHybrid.h" #include #include #include #include #include #include #include "sparse.h" #include "hybrid.h" #include "PrismHybridGlob.h" #include "jnipointer.h" #include "prism.h" #include // local prototypes static void mult_rec(HDDNode *hdd, int level, int row_offset, int col_offset); static void mult_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset); static void mult_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset); // globals (used by local functions) static HDDNode *zero; static int num_levels; static bool compact_sm; static double *sm_dist; static int sm_dist_shift; static int sm_dist_mask; static double *soln = NULL, *soln2 = NULL; //------------------------------------------------------------------------------ JNIEXPORT jlong __jlongpointer JNICALL Java_hybrid_PrismHybrid_PH_1ProbCumulReward ( JNIEnv *env, jclass cls, jlong __jlongpointer t, // trans matrix jlong __jlongpointer sr, // state rewards jlong __jlongpointer trr,// transition rewards jlong __jlongpointer od, // odd jlong __jlongpointer rv, // row vars jint num_rvars, jlong __jlongpointer cv, // col vars jint num_cvars, jint bound // time bound ) { // cast function parameters DdNode *trans = jlong_to_DdNode(t); // trans matrix DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards DdNode *trans_rewards = jlong_to_DdNode(trr); // transition rewards ODDNode *odd = jlong_to_ODDNode(od); // reachable states DdNode **rvars = jlong_to_DdNode_array(rv); // row vars DdNode **cvars = jlong_to_DdNode_array(cv); // col vars // mtbdds DdNode *all_rewards = NULL; // model stats int n; // flags bool compact_r; // matrix mtbdd HDDMatrix *hddm = NULL; HDDNode *hdd = NULL; // vectors double *rew_vec = NULL, *tmpsoln = NULL; DistVector *rew_dist = NULL; // timing stuff long start1, start2, start3, stop; double time_taken, time_for_setup, time_for_iters; // misc int i, iters; double kb, kbt; // exception handling around whole function try { // start clocks start1 = start2 = util_cpu_time(); // get number of states n = odd->eoff + odd->toff; // build hdd for matrix PH_PrintToMainLog(env, "\nBuilding hybrid MTBDD matrix... "); hddm = build_hdd_matrix(trans, rvars, cvars, num_rvars, odd, true); hdd = hddm->top; zero = hddm->zero; num_levels = hddm->num_levels; kb = hddm->mem_nodes; kbt = kb; PH_PrintToMainLog(env, "[levels=%d, nodes=%d] ", hddm->num_levels, hddm->num_nodes); PH_PrintMemoryToMainLog(env, "[", kb, "]\n"); // add sparse matrices PH_PrintToMainLog(env, "Adding explicit sparse matrices... "); add_sparse_matrices(hddm, compact, false); compact_sm = hddm->compact_sm; if (compact_sm) { sm_dist = hddm->dist; sm_dist_shift = hddm->dist_shift; sm_dist_mask = hddm->dist_mask; } kb = hddm->mem_sm; kbt += kb; PH_PrintToMainLog(env, "[levels=%d, num=%d%s] ", hddm->l_sm, hddm->num_sm, compact_sm?", compact":""); PH_PrintMemoryToMainLog(env, "[", kb, "]\n"); // multiply transition rewards by transition probs and sum rows // then combine state and transition rewards and put in a vector Cudd_Ref(trans_rewards); Cudd_Ref(trans); all_rewards = DD_Apply(ddman, APPLY_TIMES, trans_rewards, trans); all_rewards = DD_SumAbstract(ddman, all_rewards, cvars, num_cvars); Cudd_Ref(state_rewards); all_rewards = DD_Apply(ddman, APPLY_PLUS, state_rewards, all_rewards); // get vector of rewards PH_PrintToMainLog(env, "Creating vector for rewards... "); rew_vec = mtbdd_to_double_vector(ddman, all_rewards, rvars, num_rvars, odd); // try and convert to compact form if required compact_r = false; if (compact) { if ((rew_dist = double_vector_to_dist(rew_vec, n))) { compact_r = true; delete[] rew_vec; rew_vec = NULL; } } kb = (!compact_r) ? n*8.0/1024.0 : (rew_dist->num_dist*8.0+n*2.0)/1024.0; kbt += kb; if (compact_r) PH_PrintToMainLog(env, "[dist=%d, compact] ", rew_dist->num_dist); PH_PrintMemoryToMainLog(env, "[", kb, "]\n"); // create solution/iteration vectors PH_PrintToMainLog(env, "Allocating iteration vectors... "); soln = new double[n]; soln2 = new double[n]; kb = n*8.0/1024.0; kbt += 2*kb; PH_PrintMemoryToMainLog(env, "[2 x ", kb, "]\n"); // print total memory usage PH_PrintMemoryToMainLog(env, "TOTAL: [", kbt, "]\n"); // initial solution is zero for (i = 0; i < n; i++) { soln[i] = 0; } // get setup time stop = util_cpu_time(); time_for_setup = (double)(stop - start2)/1000; start2 = stop; start3 = stop; // start iterations PH_PrintToMainLog(env, "\nStarting iterations...\n"); // note that we ignore max_iters as we know how any iterations _should_ be performed for (iters = 0; iters < bound; iters++) { // initialise vector for (i = 0; i < n; i++) { soln2[i] = (!compact_r) ? rew_vec[i] : rew_dist->dist[rew_dist->ptrs[i]]; } // do matrix vector multiply bit mult_rec(hdd, 0, 0, 0); // print occasional status update if ((util_cpu_time() - start3) > UPDATE_DELAY) { PH_PrintToMainLog(env, "Iteration %d (of %d): ", iters, bound); PH_PrintToMainLog(env, "%.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000)); start3 = util_cpu_time(); } // prepare for next iteration tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // stop clocks stop = util_cpu_time(); time_for_iters = (double)(stop - start2)/1000; time_taken = (double)(stop - start1)/1000; // print iterations/timing info PH_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup); // catch exceptions: register error, free memory } catch (std::bad_alloc e) { PH_SetErrorMessage("Out of memory"); if (soln) delete[] soln; soln = 0; } // free memory if (all_rewards) Cudd_RecursiveDeref(ddman, all_rewards); if (hddm) delete hddm; if (rew_vec) delete[] rew_vec; if (rew_dist) delete rew_dist; if (soln2) delete soln2; return ptr_to_jlong(soln); } //------------------------------------------------------------------------------ static void mult_rec(HDDNode *hdd, int level, int row_offset, int col_offset) { HDDNode *e, *t; // if it's the zero node if (hdd == zero) { return; } // or if we've reached a submatrix // (check for non-null ptr but, equivalently, we could just check if level==l_sm) else if (hdd->sm.ptr) { if (!compact_sm) { mult_rm((RMSparseMatrix *)hdd->sm.ptr, row_offset, col_offset); } else { mult_cmsr((CMSRSparseMatrix *)hdd->sm.ptr, row_offset, col_offset); } return; } // or if we've reached the bottom else if (level == num_levels) { //printf("(%d,%d)=%f\n", row_offset, col_offset, hdd->type.val); soln2[row_offset] += soln[col_offset] * hdd->type.val; return; } // otherwise recurse e = hdd->type.kids.e; if (e != zero) { mult_rec(e->type.kids.e, level+1, row_offset, col_offset); mult_rec(e->type.kids.t, level+1, row_offset, col_offset+e->off.val); } t = hdd->type.kids.t; if (t != zero) { mult_rec(t->type.kids.e, level+1, row_offset+hdd->off.val, col_offset); mult_rec(t->type.kids.t, level+1, row_offset+hdd->off.val, col_offset+t->off.val); } } //----------------------------------------------------------------------------------- static void mult_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset) { int i2, j2, l2, h2; int sm_n = rmsm->n; int sm_nnz = rmsm->nnz; double *sm_non_zeros = rmsm->non_zeros; unsigned char *sm_row_counts = rmsm->row_counts; int *sm_row_starts = (int *)rmsm->row_counts; bool sm_use_counts = rmsm->use_counts; unsigned int *sm_cols = rmsm->cols; // loop through rows of submatrix l2 = sm_nnz; h2 = 0; for (i2 = 0; i2 < sm_n; i2++) { // loop through entries in this row if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; } else { l2 = h2; h2 += sm_row_counts[i2]; } for (j2 = l2; j2 < h2; j2++) { soln2[row_offset + i2] += soln[col_offset + sm_cols[j2]] * sm_non_zeros[j2]; //printf("(%d,%d)=%f\n", row_offset + i2, col_offset + sm_cols[j2], sm_non_zeros[j2]); } } } //----------------------------------------------------------------------------------- static void mult_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset) { int i2, j2, l2, h2; int sm_n = cmsrsm->n; int sm_nnz = cmsrsm->nnz; unsigned char *sm_row_counts = cmsrsm->row_counts; int *sm_row_starts = (int *)cmsrsm->row_counts; bool sm_use_counts = cmsrsm->use_counts; unsigned int *sm_cols = cmsrsm->cols; // loop through rows of submatrix l2 = sm_nnz; h2 = 0; for (i2 = 0; i2 < sm_n; i2++) { // loop through entries in this row if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; } else { l2 = h2; h2 += sm_row_counts[i2]; } for (j2 = l2; j2 < h2; j2++) { soln2[row_offset + i2] += soln[col_offset + (int)(sm_cols[j2] >> sm_dist_shift)] * sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]; //printf("(%d,%d)=%f\n", row_offset + i2, col_offset + (int)(sm_cols[j2] >> sm_dist_shift), sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]); } } } //------------------------------------------------------------------------------