//============================================================================== // // Copyright (c) 2016- // Authors: // * Dave Parker (University of Birmingham) // * Joachim Klein (TU Dresden) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== #ifndef MEASURE_H #define MEASURE_H #include // for std::size_t type #include // for isinf #include /** * Measure: Computes maximum element-wise difference between value vectors. * In relative mode, the difference is scaled by the value. */ class MeasureSupNorm { private: // relative mode? const bool relative; // the current maximal value double sup_norm; public: /** Constructor, set relative flag */ MeasureSupNorm(bool relative) : relative(relative) { reset(); } /** Reset for new measurement */ void reset() { sup_norm = 0.0; } /** Relative mode? */ bool isRelative() const { return relative; } /** * Do the measurement for a single pair of values. * For relative mode, the second value is used as the divisor. */ inline void measure(double v1, double v2) { double x; // compute absolute of difference x = fabs(v2 - v1); if (relative) { // for relative mode: divide by second value // We take the absolute value of v2 to ensure that // x remains non-negative. v2 can become negative e.g. // during iterations with over-relaxation with large // omega values. // Note: if v2 is 0, then x will become +inf for x>0 and NaN for x=0, i.e., v1=v2=0 // In the later case, the max computation below will ignore the NaN, // as NaN > y is false for all y x /= fabs(v2); } // sup_norm = max { x, sup_norm } if (x > sup_norm) { sup_norm = x; } } /** * Do the measurement for two value arrays of size n. * For relative mode, the values of the second array are used as the divisors. */ inline void measure(const double *soln, const double *soln2, std::size_t n) { for (std::size_t i = 0; i < n; i++) { measure(soln[i], soln2[i]); } } /** Return the measured value */ double value() const { return sup_norm; } }; /** * Measure for determining the difference between the upper and lower values in * an interval iteration. * In relative mode, the difference is scaled by the mid-point between upper and lower value. */ class MeasureSupNormInterval { private: // relative mode? const bool relative; // the current maximal value double sup_norm; public: /** Constructor, set relative flag */ MeasureSupNormInterval(bool relative) : relative(relative) { reset(); } /** Reset for new measurement */ void reset() { sup_norm = 0.0; } /** Relative mode? */ bool isRelative() const { return relative; } /** * Do the measurement for an upper and lower value pair. * For relative mode, the lower value is used as the divisor. */ inline void measure(double lower, double upper) { double x; // special case: one of the values is infinite (this can happen e.g. for non-converging // iterations when the values grow extremely large and overflow to infinity). if (isinf(lower) || isinf(upper)) { x = std::numeric_limits::infinity(); } else { // compute difference // we don't use fabs like for MeasureSupNorm, as we want x to become negative // in situations where upper < lower (should only happen due to numerical inaccuracies / rounding) x = upper - lower; // we clamp to zero for negative values if (x < 0) x = 0; if (relative && x != 0.0) { // for relative mode: divide by lower // taking lower ensures that if the actual value should happen to be // the lower value, that then the relative precision is satisfied. // We take the absolute value of the lower to ensure that // x does not flip signs. // Note: if lower is 0.0, then x will become +inf, as x!=0 x /= fabs(lower); } } // sup_norm = max { x, sup_norm } if (x > sup_norm) { sup_norm = x; } } /** * Do the measurement for a pair of arrays (lower and upper bounds) of size n. * For relative mode, the midpoints are used as the divisors. */ inline void measure(const double *lower, const double *upper, std::size_t n) { for (std::size_t i = 0; i < n; i++) { measure(lower[i], upper[i]); } } /** Return the measured value */ double value() const { return sup_norm; } }; #endif