//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== package explicit; import java.io.File; import java.util.Arrays; import java.util.BitSet; import java.util.List; import java.util.Map; import parser.VarList; import parser.ast.Declaration; import parser.ast.DeclarationIntUnbounded; import parser.ast.Expression; import parser.type.TypeDouble; import prism.Prism; import prism.PrismComponent; import prism.PrismException; import prism.PrismFileLog; import prism.PrismNotSupportedException; import prism.PrismUtils; import acceptance.AcceptanceReach; import acceptance.AcceptanceType; import explicit.rewards.MCRewards; /** * Explicit-state model checker for discrete-time Markov chains (DTMCs). */ public class DTMCModelChecker extends ProbModelChecker { /** * Create a new DTMCModelChecker, inherit basic state from parent (unless null). */ public DTMCModelChecker(PrismComponent parent) throws PrismException { super(parent); } // Model checking functions @Override protected StateValues checkProbPathFormulaLTL(Model model, Expression expr, boolean qual, MinMax minMax, BitSet statesOfInterest) throws PrismException { LTLModelChecker mcLtl; StateValues probsProduct, probs; LTLModelChecker.LTLProduct product; DTMCModelChecker mcProduct; // For LTL model checking routines mcLtl = new LTLModelChecker(this); // Build product of Markov chain and automaton AcceptanceType[] allowedAcceptance = { AcceptanceType.RABIN, AcceptanceType.REACH }; product = mcLtl.constructProductMC(this, (DTMC)model, expr, statesOfInterest, allowedAcceptance); // Output product, if required if (getExportProductTrans()) { mainLog.println("\nExporting product transition matrix to file \"" + getExportProductTransFilename() + "\"..."); product.getProductModel().exportToPrismExplicitTra(getExportProductTransFilename()); } if (getExportProductStates()) { mainLog.println("\nExporting product state space to file \"" + getExportProductStatesFilename() + "\"..."); PrismFileLog out = new PrismFileLog(getExportProductStatesFilename()); VarList newVarList = (VarList) modulesFile.createVarList().clone(); String daVar = "_da"; while (newVarList.getIndex(daVar) != -1) { daVar = "_" + daVar; } newVarList.addVar(0, new Declaration(daVar, new DeclarationIntUnbounded()), 1, null); product.getProductModel().exportStates(Prism.EXPORT_PLAIN, newVarList, out); out.close(); } // Find accepting states + compute reachability probabilities BitSet acc; if (product.getAcceptance() instanceof AcceptanceReach) { mainLog.println("\nSkipping BSCC computation since acceptance is defined via goal states..."); acc = ((AcceptanceReach)product.getAcceptance()).getGoalStates(); } else { mainLog.println("\nFinding accepting BSCCs..."); acc = mcLtl.findAcceptingBSCCs(product.getProductModel(), product.getAcceptance()); } mainLog.println("\nComputing reachability probabilities..."); mcProduct = new DTMCModelChecker(this); mcProduct.inheritSettings(this); probsProduct = StateValues.createFromDoubleArray(mcProduct.computeReachProbs(product.getProductModel(), acc).soln, product.getProductModel()); // Mapping probabilities in the original model probs = product.projectToOriginalModel(probsProduct); probsProduct.clear(); return probs; } public ModelCheckerResult computeInstantaneousRewards(DTMC dtmc, MCRewards mcRewards, double t) throws PrismException { ModelCheckerResult res = null; int i, n, iters; double soln[], soln2[], tmpsoln[]; long timer; int right = (int) t; // Store num states n = dtmc.getNumStates(); // Start backwards transient computation timer = System.currentTimeMillis(); mainLog.println("\nStarting backwards instantaneous rewards computation..."); // Create solution vector(s) soln = new double[n]; soln2 = new double[n]; // Initialise solution vectors. for (i = 0; i < n; i++) soln[i] = mcRewards.getStateReward(i); // Start iterations for (iters = 0; iters < right; iters++) { // Matrix-vector multiply dtmc.mvMult(soln, soln2, null, false); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished backwards transient computation timer = System.currentTimeMillis() - timer; mainLog.print("Backwards transient instantaneous rewards computation"); mainLog.println(" took " + iters + " iters and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.lastSoln = soln2; res.numIters = iters; res.timeTaken = timer / 1000.0; res.timePre = 0.0; return res; } public ModelCheckerResult computeCumulativeRewards(DTMC dtmc, MCRewards mcRewards, double t) throws PrismException { ModelCheckerResult res = null; int i, n, iters; double soln[], soln2[], tmpsoln[]; long timer; int right = (int) t; // Store num states n = dtmc.getNumStates(); // Start backwards transient computation timer = System.currentTimeMillis(); mainLog.println("\nStarting backwards cumulative rewards computation..."); // Create solution vector(s) soln = new double[n]; soln2 = new double[n]; // Start iterations for (iters = 0; iters < right; iters++) { // Matrix-vector multiply plus adding rewards dtmc.mvMult(soln, soln2, null, false); for (i = 0; i < n; i++) { soln2[i] += mcRewards.getStateReward(i); } // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished backwards transient computation timer = System.currentTimeMillis() - timer; mainLog.print("Backwards cumulative rewards computation"); mainLog.println(" took " + iters + " iters and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.lastSoln = soln2; res.numIters = iters; res.timeTaken = timer / 1000.0; res.timePre = 0.0; return res; } // Steady-state/transient probability computation /** * Compute steady-state probability distribution (forwards). * Start from initial state (or uniform distribution over multiple initial states). */ public StateValues doSteadyState(DTMC dtmc) throws PrismException { return doSteadyState(dtmc, (StateValues) null); } /** * Compute steady-state probability distribution (forwards). * Optionally, use the passed in file initDistFile to give the initial probability distribution (time 0). * If null, start from initial state (or uniform distribution over multiple initial states). */ public StateValues doSteadyState(DTMC dtmc, File initDistFile) throws PrismException { StateValues initDist = readDistributionFromFile(initDistFile, dtmc); return doSteadyState(dtmc, initDist); } /** * Compute steady-state probability distribution (forwards). * Optionally, use the passed in vector initDist as the initial probability distribution (time 0). * If null, start from initial state (or uniform distribution over multiple initial states). * For reasons of efficiency, when a vector is passed in, it will be trampled over, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param initDist Initial distribution (will be overwritten) */ public StateValues doSteadyState(DTMC dtmc, StateValues initDist) throws PrismException { StateValues initDistNew = (initDist == null) ? buildInitialDistribution(dtmc) : initDist; ModelCheckerResult res = computeSteadyStateProbs(dtmc, initDistNew.getDoubleArray()); return StateValues.createFromDoubleArray(res.soln, dtmc); } /** * Compute transient probability distribution (forwards). * Optionally, use the passed in vector initDist as the initial probability distribution (time step 0). * If null, start from initial state (or uniform distribution over multiple initial states). * For reasons of efficiency, when a vector is passed in, it will be trampled over, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param k Time step * @param initDist Initial distribution (will be overwritten) */ public StateValues doTransient(DTMC dtmc, int k, double initDist[]) throws PrismException { throw new PrismNotSupportedException("Not implemented yet"); } // Utility methods for probability distributions /** * Generate a probability distribution, stored as a StateValues object, from a file. * If {@code distFile} is null, so is the return value. */ public StateValues readDistributionFromFile(File distFile, Model model) throws PrismException { StateValues dist = null; if (distFile != null) { mainLog.println("\nImporting probability distribution from file \"" + distFile + "\"..."); // Build an empty vector dist = new StateValues(TypeDouble.getInstance(), model); // Populate vector from file dist.readFromFile(distFile); } return dist; } /** * Build a probability distribution, stored as a StateValues object, * from the initial states info of the current model: either probability 1 for * the (single) initial state or equiprobable over multiple initial states. */ public StateValues buildInitialDistribution(Model model) throws PrismException { StateValues dist = null; // Build an empty vector dist = new StateValues(TypeDouble.getInstance(), model); // Populate vector (equiprobable over initial states) double d = 1.0 / model.getNumInitialStates(); for (int in : model.getInitialStates()) { dist.setDoubleValue(in, d); } return dist; } // Numerical computation functions /** * Compute next=state probabilities. * i.e. compute the probability of being in a state in {@code target} in the next step. * @param dtmc The DTMC * @param target Target states */ public ModelCheckerResult computeNextProbs(DTMC dtmc, BitSet target) throws PrismException { ModelCheckerResult res = null; int n; double soln[], soln2[]; long timer; timer = System.currentTimeMillis(); // Store num states n = dtmc.getNumStates(); // Create/initialise solution vector(s) soln = Utils.bitsetToDoubleArray(target, n); soln2 = new double[n]; // Next-step probabilities dtmc.mvMult(soln, soln2, null, false); // Return results res = new ModelCheckerResult(); res.soln = soln2; res.numIters = 1; res.timeTaken = timer / 1000.0; return res; } /** * Given a value vector x, compute the probability: * v(s) = Sum_s' P(s,s')*x(s') for s labeled with a, * v(s) = 0 for s not labeled with a. * * @param dtmc the DTMC model * @param a the set of states labeled with a * @param x the value vector */ protected double[] computeRestrictedNext(DTMC dtmc, BitSet a, double[] x) { double[] soln; int n; // Store num states n = dtmc.getNumStates(); // initialized to 0.0 soln = new double[n]; // Next-step probabilities multiplication // restricted to a states dtmc.mvMult(x, soln, a, false); return soln; } /** * Compute reachability probabilities. * i.e. compute the probability of reaching a state in {@code target}. * @param dtmc The DTMC * @param target Target states */ public ModelCheckerResult computeReachProbs(DTMC dtmc, BitSet target) throws PrismException { return computeReachProbs(dtmc, null, target, null, null); } /** * Compute until probabilities. * i.e. compute the probability of reaching a state in {@code target}, * while remaining in those in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states */ public ModelCheckerResult computeUntilProbs(DTMC dtmc, BitSet remain, BitSet target) throws PrismException { return computeReachProbs(dtmc, remain, target, null, null); } /** * Compute reachability/until probabilities. * i.e. compute the min/max probability of reaching a state in {@code target}, * while remaining in those in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param init Optionally, an initial solution vector (may be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ public ModelCheckerResult computeReachProbs(DTMC dtmc, BitSet remain, BitSet target, double init[], BitSet known) throws PrismException { ModelCheckerResult res = null; BitSet no, yes; int i, n, numYes, numNo; long timer, timerProb0, timerProb1; // Local copy of setting LinEqMethod linEqMethod = this.linEqMethod; // Switch to a supported method, if necessary if (!(linEqMethod == LinEqMethod.POWER || linEqMethod == LinEqMethod.GAUSS_SEIDEL)) { linEqMethod = LinEqMethod.GAUSS_SEIDEL; mainLog.printWarning("Switching to linear equation solution method \"" + linEqMethod.fullName() + "\""); } // Start probabilistic reachability timer = System.currentTimeMillis(); mainLog.println("\nStarting probabilistic reachability..."); // Check for deadlocks in non-target state (because breaks e.g. prob1) dtmc.checkForDeadlocks(target); // Store num states n = dtmc.getNumStates(); // Optimise by enlarging target set (if more info is available) if (init != null && known != null) { BitSet targetNew = new BitSet(n); for (i = 0; i < n; i++) { targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 1.0)); } target = targetNew; } // If required, export info about target states if (getExportTarget()) { BitSet bsInit = new BitSet(n); for (i = 0; i < n; i++) { bsInit.set(i, dtmc.isInitialState(i)); } List labels = Arrays.asList(bsInit, target); List labelNames = Arrays.asList("init", "target"); mainLog.println("\nExporting target states info to file \"" + getExportTargetFilename() + "\"..."); exportLabels(dtmc, labels, labelNames, Prism.EXPORT_PLAIN, new PrismFileLog(getExportTargetFilename())); } // Precomputation timerProb0 = System.currentTimeMillis(); if (precomp && prob0) { no = prob0(dtmc, remain, target); } else { no = new BitSet(); } timerProb0 = System.currentTimeMillis() - timerProb0; timerProb1 = System.currentTimeMillis(); if (precomp && prob1) { yes = prob1(dtmc, remain, target); } else { yes = (BitSet) target.clone(); } timerProb1 = System.currentTimeMillis() - timerProb1; // Print results of precomputation numYes = yes.cardinality(); numNo = no.cardinality(); mainLog.println("target=" + target.cardinality() + ", yes=" + numYes + ", no=" + numNo + ", maybe=" + (n - (numYes + numNo))); // Compute probabilities switch (linEqMethod) { case POWER: res = computeReachProbsValIter(dtmc, no, yes, init, known); break; case GAUSS_SEIDEL: res = computeReachProbsGaussSeidel(dtmc, no, yes, init, known); break; default: throw new PrismException("Unknown linear equation solution method " + linEqMethod.fullName()); } // Finished probabilistic reachability timer = System.currentTimeMillis() - timer; mainLog.println("Probabilistic reachability took " + timer / 1000.0 + " seconds."); // Update time taken res.timeTaken = timer / 1000.0; res.timeProb0 = timerProb0 / 1000.0; res.timePre = (timerProb0 + timerProb1) / 1000.0; return res; } /** * Prob0 precomputation algorithm. * i.e. determine the states of a DTMC which, with probability 0, * reach a state in {@code target}, while remaining in those in @{code remain}. * @param mdp The MDP * @param remain Remain in these states (optional: null means "all") * @param target Target states */ public BitSet prob0(DTMC dtmc, BitSet remain, BitSet target) { int n, iters; BitSet u, soln, unknown; boolean u_done; long timer; // Start precomputation timer = System.currentTimeMillis(); mainLog.println("Starting Prob0..."); // Special case: no target states if (target.cardinality() == 0) { soln = new BitSet(dtmc.getNumStates()); soln.set(0, dtmc.getNumStates()); return soln; } // Initialise vectors n = dtmc.getNumStates(); u = new BitSet(n); soln = new BitSet(n); // Determine set of states actually need to perform computation for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); if (remain != null) unknown.and(remain); // Fixed point loop iters = 0; u_done = false; // Least fixed point - should start from 0 but we optimise by // starting from 'target', thus bypassing first iteration u.or(target); soln.or(target); while (!u_done) { iters++; // Single step of Prob0 dtmc.prob0step(unknown, u, soln); // Check termination u_done = soln.equals(u); // u = soln u.clear(); u.or(soln); } // Negate u.flip(0, n); // Finished precomputation timer = System.currentTimeMillis() - timer; mainLog.print("Prob0"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); return u; } /** * Prob1 precomputation algorithm. * i.e. determine the states of a DTMC which, with probability 1, * reach a state in {@code target}, while remaining in those in @{code remain}. * @param mdp The MDP * @param remain Remain in these states (optional: null means "all") * @param target Target states */ public BitSet prob1(DTMC dtmc, BitSet remain, BitSet target) { int n, iters; BitSet u, v, soln, unknown; boolean u_done, v_done; long timer; // Start precomputation timer = System.currentTimeMillis(); mainLog.println("Starting Prob1..."); // Special case: no target states if (target.cardinality() == 0) { return new BitSet(dtmc.getNumStates()); } // Initialise vectors n = dtmc.getNumStates(); u = new BitSet(n); v = new BitSet(n); soln = new BitSet(n); // Determine set of states actually need to perform computation for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); if (remain != null) unknown.and(remain); // Nested fixed point loop iters = 0; u_done = false; // Greatest fixed point u.set(0, n); while (!u_done) { v_done = false; // Least fixed point - should start from 0 but we optimise by // starting from 'target', thus bypassing first iteration v.clear(); v.or(target); soln.clear(); soln.or(target); while (!v_done) { iters++; // Single step of Prob1 dtmc.prob1step(unknown, u, v, soln); // Check termination (inner) v_done = soln.equals(v); // v = soln v.clear(); v.or(soln); } // Check termination (outer) u_done = v.equals(u); // u = v u.clear(); u.or(v); } // Finished precomputation timer = System.currentTimeMillis() - timer; mainLog.print("Prob1"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); return u; } /** * Compute reachability probabilities using value iteration. * @param dtmc The DTMC * @param no Probability 0 states * @param yes Probability 1 states * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachProbsValIter(DTMC dtmc, BitSet no, BitSet yes, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], soln2[], tmpsoln[], initVal; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting value iteration..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal // where initVal is 0.0 or 1.0, depending on whether we converge from below/above. initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0; if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(yes); unknown.andNot(no); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply dtmc.mvMult(soln, soln2, unknown, false); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; mainLog.print("Value iteration"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Non-convergence is an error (usually) if (!done && errorOnNonConverge) { String msg = "Iterative method did not converge within " + iters + " iterations."; msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; throw new PrismException(msg); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute reachability probabilities using Gauss-Seidel. * @param dtmc The DTMC * @param no Probability 0 states * @param yes Probability 1 states * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachProbsGaussSeidel(DTMC dtmc, BitSet no, BitSet yes, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], initVal, maxDiff; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting Gauss-Seidel..."); // Store num states n = dtmc.getNumStates(); // Create solution vector soln = (init == null) ? new double[n] : init; // Initialise solution vector. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal // where initVal is 0.0 or 1.0, depending on whether we converge from below/above. initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0; if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(yes); unknown.andNot(no); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply maxDiff = dtmc.mvMultGS(soln, unknown, false, termCrit == TermCrit.ABSOLUTE); // Check termination done = maxDiff < termCritParam; } // Finished Gauss-Seidel timer = System.currentTimeMillis() - timer; mainLog.print("Gauss-Seidel"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Non-convergence is an error (usually) if (!done && errorOnNonConverge) { String msg = "Iterative method did not converge within " + iters + " iterations."; msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; throw new PrismException(msg); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute bounded reachability probabilities. * i.e. compute the probability of reaching a state in {@code target} within k steps. * @param dtmc The DTMC * @param target Target states * @param k Bound */ public ModelCheckerResult computeBoundedReachProbs(DTMC dtmc, BitSet target, int k) throws PrismException { return computeBoundedReachProbs(dtmc, null, target, k, null, null); } /** * Compute bounded until probabilities. * i.e. compute the probability of reaching a state in {@code target}, * within k steps, and while remaining in states in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param k Bound */ public ModelCheckerResult computeBoundedUntilProbs(DTMC dtmc, BitSet remain, BitSet target, int k) throws PrismException { return computeBoundedReachProbs(dtmc, remain, target, k, null, null); } /** * Compute bounded reachability/until probabilities. * i.e. compute the probability of reaching a state in {@code target}, * within k steps, and while remaining in states in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param k Bound * @param init Initial solution vector - pass null for default * @param results Optional array of size b+1 to store (init state) results for each step (null if unused) */ public ModelCheckerResult computeBoundedReachProbs(DTMC dtmc, BitSet remain, BitSet target, int k, double init[], double results[]) throws PrismException { ModelCheckerResult res = null; BitSet unknown; int i, n, iters; double soln[], soln2[], tmpsoln[]; long timer; // Start bounded probabilistic reachability timer = System.currentTimeMillis(); mainLog.println("\nStarting bounded probabilistic reachability..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use passed in initial vector, if present if (init != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0; } // Store intermediate results if required // (compute min/max value over initial states for first step) if (results != null) { // TODO: whether this is min or max should be specified somehow results[0] = Utils.minMaxOverArraySubset(soln2, dtmc.getInitialStates(), true); } // Determine set of states actually need to perform computation for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); if (remain != null) unknown.and(remain); // Start iterations iters = 0; while (iters < k) { iters++; // Matrix-vector multiply dtmc.mvMult(soln, soln2, unknown, false); // Store intermediate results if required // (compute min/max value over initial states for this step) if (results != null) { // TODO: whether this is min or max should be specified somehow results[iters] = Utils.minMaxOverArraySubset(soln2, dtmc.getInitialStates(), true); } // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished bounded probabilistic reachability timer = System.currentTimeMillis() - timer; mainLog.print("Bounded probabilistic reachability"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.lastSoln = soln2; res.numIters = iters; res.timeTaken = timer / 1000.0; res.timePre = 0.0; return res; } /** * Compute expected reachability rewards. * @param dtmc The DTMC * @param mcRewards The rewards * @param target Target states */ public ModelCheckerResult computeReachRewards(DTMC dtmc, MCRewards mcRewards, BitSet target) throws PrismException { return computeReachRewards(dtmc, mcRewards, target, null, null); } /** * Compute expected reachability rewards. * @param dtmc The DTMC * @param mcRewards The rewards * @param target Target states * @param init Optionally, an initial solution vector (may be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ public ModelCheckerResult computeReachRewards(DTMC dtmc, MCRewards mcRewards, BitSet target, double init[], BitSet known) throws PrismException { ModelCheckerResult res = null; BitSet inf; int i, n, numTarget, numInf; long timer, timerProb1; // Local copy of setting LinEqMethod linEqMethod = this.linEqMethod; // Switch to a supported method, if necessary if (!(linEqMethod == LinEqMethod.POWER)) { linEqMethod = LinEqMethod.POWER; mainLog.printWarning("Switching to linear equation solution method \"" + linEqMethod.fullName() + "\""); } // Start expected reachability timer = System.currentTimeMillis(); mainLog.println("\nStarting expected reachability..."); // Check for deadlocks in non-target state (because breaks e.g. prob1) dtmc.checkForDeadlocks(target); // Store num states n = dtmc.getNumStates(); // Optimise by enlarging target set (if more info is available) if (init != null && known != null) { BitSet targetNew = new BitSet(n); for (i = 0; i < n; i++) { targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 0.0)); } target = targetNew; } // Precomputation (not optional) timerProb1 = System.currentTimeMillis(); inf = prob1(dtmc, null, target); inf.flip(0, n); timerProb1 = System.currentTimeMillis() - timerProb1; // Print results of precomputation numTarget = target.cardinality(); numInf = inf.cardinality(); mainLog.println("target=" + numTarget + ", inf=" + numInf + ", rest=" + (n - (numTarget + numInf))); // Compute rewards switch (linEqMethod) { case POWER: res = computeReachRewardsValIter(dtmc, mcRewards, target, inf, init, known); break; default: throw new PrismException("Unknown linear equation solution method " + linEqMethod.fullName()); } // Finished expected reachability timer = System.currentTimeMillis() - timer; mainLog.println("Expected reachability took " + timer / 1000.0 + " seconds."); // Update time taken res.timeTaken = timer / 1000.0; res.timePre = timerProb1 / 1000.0; return res; } /** * Compute expected reachability rewards using value iteration. * @param dtmc The DTMC * @param mcRewards The rewards * @param target Target states * @param inf States for which reward is infinite * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachRewardsValIter(DTMC dtmc, MCRewards mcRewards, BitSet target, BitSet inf, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], soln2[], tmpsoln[]; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting value iteration..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0 if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); unknown.andNot(inf); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { //mainLog.println(soln); iters++; // Matrix-vector multiply dtmc.mvMultRew(soln, mcRewards, soln2, unknown, false); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; mainLog.print("Value iteration"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Non-convergence is an error (usually) if (!done && errorOnNonConverge) { String msg = "Iterative method did not converge within " + iters + " iterations."; msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; throw new PrismException(msg); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute (forwards) steady-state probabilities * i.e. compute the long-run probability of being in each state, * assuming the initial distribution {@code initDist}. * For space efficiency, the initial distribution vector will be modified and values over-written, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param initDist Initial distribution (will be overwritten) */ public ModelCheckerResult computeSteadyStateProbs(DTMC dtmc, double initDist[]) throws PrismException { ModelCheckerResult res; BitSet startNot, bscc; double probBSCCs[], solnProbs[], reachProbs[]; int n, numBSCCs = 0, allInOneBSCC; long timer; timer = System.currentTimeMillis(); // Store num states n = dtmc.getNumStates(); // Create results vector solnProbs = new double[n]; // Compute bottom strongly connected components (BSCCs) SCCComputer sccComputer = SCCComputer.createSCCComputer(this, dtmc); sccComputer.computeBSCCs(); List bsccs = sccComputer.getBSCCs(); BitSet notInBSCCs = sccComputer.getNotInBSCCs(); numBSCCs = bsccs.size(); // See which states in the initial distribution do *not* have non-zero prob startNot = new BitSet(); for (int i = 0; i < n; i++) { if (initDist[i] == 0) startNot.set(i); } // Determine whether initial states are all in a single BSCC allInOneBSCC = -1; for (int b = 0; b < numBSCCs; b++) { if (!bsccs.get(b).intersects(startNot)) { allInOneBSCC = b; break; } } // If all initial states are in a single BSCC, it's easy... // Just compute steady-state probabilities for the BSCC if (allInOneBSCC != -1) { mainLog.println("\nInitial states all in one BSCC (so no reachability probabilities computed)"); bscc = bsccs.get(allInOneBSCC); computeSteadyStateProbsForBSCC(dtmc, bscc, solnProbs); } // Otherwise, have to consider all the BSCCs else { // Compute probability of reaching each BSCC from initial distribution probBSCCs = new double[numBSCCs]; for (int b = 0; b < numBSCCs; b++) { mainLog.println("\nComputing probability of reaching BSCC " + (b + 1)); bscc = bsccs.get(b); // Compute probabilities reachProbs = computeUntilProbs(dtmc, notInBSCCs, bscc).soln; // Compute probability of reaching BSCC, which is dot product of // vectors for initial distribution and probabilities of reaching it probBSCCs[b] = 0.0; for (int i = 0; i < n; i++) { probBSCCs[b] += initDist[i] * reachProbs[i]; } mainLog.print("\nProbability of reaching BSCC " + (b + 1) + ": " + probBSCCs[b] + "\n"); } // Compute steady-state probabilities for each BSCC for (int b = 0; b < numBSCCs; b++) { mainLog.println("\nComputing steady-state probabilities for BSCC " + (b + 1)); bscc = bsccs.get(b); // Compute steady-state probabilities for the BSCC computeSteadyStateProbsForBSCC(dtmc, bscc, solnProbs); // Multiply by BSCC reach prob for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1)) solnProbs[i] *= probBSCCs[b]; } } // Return results res = new ModelCheckerResult(); res.soln = solnProbs; timer = System.currentTimeMillis() - timer; res.timeTaken = timer / 1000.0; return res; } /** * Perform (backwards) steady-state probabilities, as required for (e.g. CSL) model checking. * Compute, for each initial state s, the sum over all states s' * of the steady-state probability of being in s' * multiplied by the corresponding probability in the vector {@code multProbs}. * If {@code multProbs} is null, it is assumed to be all 1s. * @param dtmc The DTMC * @param multProbs Multiplication vector (optional: null means all 1s) */ public ModelCheckerResult computeSteadyStateBackwardsProbs(DTMC dtmc, double multProbs[]) throws PrismException { ModelCheckerResult res; BitSet bscc; double probBSCCs[], ssProbs[], reachProbs[], soln[]; int n, numBSCCs = 0; long timer; timer = System.currentTimeMillis(); // Store num states n = dtmc.getNumStates(); // Compute bottom strongly connected components (BSCCs) SCCComputer sccComputer = SCCComputer.createSCCComputer(this, dtmc); sccComputer.computeBSCCs(); List bsccs = sccComputer.getBSCCs(); BitSet notInBSCCs = sccComputer.getNotInBSCCs(); numBSCCs = bsccs.size(); // Compute steady-state probability for each BSCC... probBSCCs = new double[numBSCCs]; ssProbs = new double[n]; for (int b = 0; b < numBSCCs; b++) { mainLog.println("\nComputing steady state probabilities for BSCC " + (b + 1)); bscc = bsccs.get(b); // Compute steady-state probabilities for the BSCC computeSteadyStateProbsForBSCC(dtmc, bscc, ssProbs); // Compute weighted sum of probabilities with multProbs probBSCCs[b] = 0.0; if (multProbs == null) { for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1)) { probBSCCs[b] += ssProbs[i]; } } else { for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1)) { probBSCCs[b] += multProbs[i] * ssProbs[i]; } } mainLog.print("\nValue for BSCC " + (b + 1) + ": " + probBSCCs[b] + "\n"); } // Create/initialise prob vector soln = new double[n]; for (int i = 0; i < n; i++) { soln[i] = 0.0; } // If every state is in a BSCC, it's much easier... if (notInBSCCs.isEmpty()) { mainLog.println("\nAll states are in BSCCs (so no reachability probabilities computed)"); for (int b = 0; b < numBSCCs; b++) { bscc = bsccs.get(b); for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1)) soln[i] += probBSCCs[b]; } } // Otherwise we have to do more work... else { // Compute probabilities of reaching each BSCC... for (int b = 0; b < numBSCCs; b++) { // Skip BSCCs with zero probability if (probBSCCs[b] == 0.0) continue; mainLog.println("\nComputing probabilities of reaching BSCC " + (b + 1)); bscc = bsccs.get(b); // Compute probabilities reachProbs = computeUntilProbs(dtmc, notInBSCCs, bscc).soln; // Multiply by value for BSCC, add to total for (int i = 0; i < n; i++) { soln[i] += reachProbs[i] * probBSCCs[b]; } } } // Return results res = new ModelCheckerResult(); res.soln = soln; timer = System.currentTimeMillis() - timer; res.timeTaken = timer / 1000.0; return res; } /** * Compute steady-state probabilities for a BSCC * i.e. compute the long-run probability of being in each state of the BSCC. * No initial distribution is specified since it does not affect the result. * The result will be stored in the relevant portion of a full vector, * whose size equals the number of states in the DTMC. * Optionally, pass in an existing vector to be used for this purpose. * @param dtmc The DTMC * @param bscc The BSCC to be analysed * @param result Storage for result (ignored if null) */ public ModelCheckerResult computeSteadyStateProbsForBSCC(DTMC dtmc, BitSet bscc, double result[]) throws PrismException { ModelCheckerResult res; int n, iters; double soln[], soln2[], tmpsoln[]; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting value iteration..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) // Use the passed in vector, if present soln = result == null ? new double[n] : result; soln2 = new double[n]; // Initialise solution vectors. Equiprobable for BSCC states. double equiprob = 1.0 / bscc.cardinality(); for (int i = bscc.nextSetBit(0); i >= 0; i = bscc.nextSetBit(i + 1)) soln[i] = soln2[i] = equiprob; // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply dtmc.vmMult(soln, soln2); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; mainLog.print("Value iteration"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Non-convergence is an error (usually) if (!done && errorOnNonConverge) { String msg = "Iterative method did not converge within " + iters + " iterations."; msg += "\nConsider using a different numerical method or increasing the maximum number of iterations"; throw new PrismException(msg); } // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute transient probabilities * i.e. compute the probability of being in each state at time step {@code k}, * assuming the initial distribution {@code initDist}. * For space efficiency, the initial distribution vector will be modified and values over-written, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param k Time step * @param initDist Initial distribution (will be overwritten) */ public ModelCheckerResult computeTransientProbs(DTMC dtmc, int k, double initDist[]) throws PrismException { throw new PrismNotSupportedException("Not implemented yet"); } /** * Simple test program. */ public static void main(String args[]) { DTMCModelChecker mc; DTMCSimple dtmc; ModelCheckerResult res; try { // Two examples of building and solving a DTMC int version = 2; if (version == 1) { // 1. Read in from .tra and .lab files // Run as: PRISM_MAINCLASS=explicit.DTMCModelChecker bin/prism dtmc.tra dtmc.lab target_label mc = new DTMCModelChecker(null); dtmc = new DTMCSimple(); dtmc.buildFromPrismExplicit(args[0]); //System.out.println(dtmc); Map labels = mc.loadLabelsFile(args[1]); //System.out.println(labels); BitSet target = labels.get(args[2]); if (target == null) throw new PrismException("Unknown label \"" + args[2] + "\""); for (int i = 3; i < args.length; i++) { if (args[i].equals("-nopre")) mc.setPrecomp(false); } res = mc.computeReachProbs(dtmc, target); System.out.println(res.soln[0]); } else { // 2. Build DTMC directly // Run as: PRISM_MAINCLASS=explicit.DTMCModelChecker bin/prism // (example taken from p.14 of Lec 5 of http://www.prismmodelchecker.org/lectures/pmc/) mc = new DTMCModelChecker(null); dtmc = new DTMCSimple(6); dtmc.setProbability(0, 1, 0.1); dtmc.setProbability(0, 2, 0.9); dtmc.setProbability(1, 0, 0.4); dtmc.setProbability(1, 3, 0.6); dtmc.setProbability(2, 2, 0.1); dtmc.setProbability(2, 3, 0.1); dtmc.setProbability(2, 4, 0.5); dtmc.setProbability(2, 5, 0.3); dtmc.setProbability(3, 3, 1.0); dtmc.setProbability(4, 4, 1.0); dtmc.setProbability(5, 5, 0.3); dtmc.setProbability(5, 4, 0.7); System.out.println(dtmc); BitSet target = new BitSet(); target.set(4); BitSet remain = new BitSet(); remain.set(1); remain.flip(0, 6); System.out.println(target); System.out.println(remain); res = mc.computeUntilProbs(dtmc, remain, target); System.out.println(res.soln[0]); } } catch (PrismException e) { System.out.println(e); } } }