//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== package explicit; import java.util.*; import prism.*; import explicit.StateValues; import explicit.rewards.*; import parser.ast.*; /** * Explicit-state model checker for discrete-time Markov chains (DTMCs). */ public class DTMCModelChecker extends ProbModelChecker { // Model checking functions /** * Compute probabilities for the contents of a P operator. */ protected StateValues checkProbPathFormula(Model model, Expression expr) throws PrismException { // Test whether this is a simple path formula (i.e. PCTL) // and then pass control to appropriate method. if (expr.isSimplePathFormula()) { return checkProbPathFormulaSimple(model, expr); } else { throw new PrismException("Explicit engine does not yet handle LTL-style path formulas"); } } /** * Compute probabilities for a simple, non-LTL path operator. */ protected StateValues checkProbPathFormulaSimple(Model model, Expression expr) throws PrismException { StateValues probs = null; // Temporal operators if (expr instanceof ExpressionTemporal) { ExpressionTemporal exprTemp = (ExpressionTemporal) expr; // Until if (exprTemp.getOperator() == ExpressionTemporal.P_U) { if (exprTemp.hasBounds()) { probs = checkProbBoundedUntil(model, exprTemp); } else { probs = checkProbUntil(model, exprTemp); } } // Anything else - convert to until and recurse else { probs = checkProbPathFormulaSimple(model, exprTemp.convertToUntilForm()); } } if (probs == null) throw new PrismException("Unrecognised path operator in P operator"); return probs; } /** * Compute probabilities for a bounded until operator. */ protected StateValues checkProbBoundedUntil(Model model, ExpressionTemporal expr) throws PrismException { int time; BitSet b1, b2; StateValues probs = null; ModelCheckerResult res = null; // get info from bounded until time = expr.getUpperBound().evaluateInt(constantValues); if (expr.upperBoundIsStrict()) time--; if (time < 0) { String bound = expr.upperBoundIsStrict() ? "<" + (time + 1) : "<=" + time; throw new PrismException("Invalid bound " + bound + " in bounded until formula"); } // model check operands first b1 = (BitSet) checkExpression(model, expr.getOperand1()); b2 = (BitSet) checkExpression(model, expr.getOperand2()); // compute probabilities // a trivial case: "U<=0" if (time == 0) { // prob is 1 in b2 states, 0 otherwise probs = StateValues.createFromBitSetAsDoubles(model.getNumStates(), b2); } else { res = computeBoundedUntilProbs((DTMC) model, b1, b2, time); probs = StateValues.createFromDoubleArray(res.soln); } return probs; } /** * Compute probabilities for an (unbounded) until operator. */ protected StateValues checkProbUntil(Model model, ExpressionTemporal expr) throws PrismException { BitSet b1, b2; StateValues probs = null; ModelCheckerResult res = null; // model check operands first b1 = (BitSet) checkExpression(model, expr.getOperand1()); b2 = (BitSet) checkExpression(model, expr.getOperand2()); // print out some info about num states // mainLog.print("\nb1 = " + JDD.GetNumMintermsString(b1, // allDDRowVars.n())); // mainLog.print(" states, b2 = " + JDD.GetNumMintermsString(b2, // allDDRowVars.n()) + " states\n"); res = computeUntilProbs((DTMC) model, b1, b2); probs = StateValues.createFromDoubleArray(res.soln); return probs; } /** * Compute rewards for the contents of an R operator. */ protected StateValues checkRewardFormula(Model model, MCRewards modelRewards, Expression expr) throws PrismException { StateValues rewards = null; if (expr instanceof ExpressionTemporal) { ExpressionTemporal exprTemp = (ExpressionTemporal) expr; switch (exprTemp.getOperator()) { case ExpressionTemporal.R_F: rewards = checkRewardReach(model, modelRewards, exprTemp); break; default: throw new PrismException("Explicit engine does not yet handle the " + exprTemp.getOperatorSymbol() + " operator in the R operator"); } } if (rewards == null) throw new PrismException("Unrecognised operator in R operator"); return rewards; } /** * Compute rewards for a reachability reward operator. */ protected StateValues checkRewardReach(Model model, MCRewards modelRewards, ExpressionTemporal expr) throws PrismException { BitSet b; StateValues rewards = null; ModelCheckerResult res = null; // model check operand first b = (BitSet) checkExpression(model, expr.getOperand2()); // print out some info about num states // mainLog.print("\nb = " + JDD.GetNumMintermsString(b1, // allDDRowVars.n())); res = computeReachRewards((DTMC) model, modelRewards, b); rewards = StateValues.createFromDoubleArray(res.soln); return rewards; } // Steady-state/transient probability computation /** * Compute steady-state probability distribution (forwards). * Optionally, use the passed in vector initDist as the initial probability distribution (time step 0). * If null, start from initial state (or uniform distribution over multiple initial states). * For reasons of efficiency, when a vector is passed in, it will be trampled over, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param initDist Initial distribution (will be overwritten) */ public StateValues doSteadyState(DTMC dtmc, double initDist[]) throws PrismException { ModelCheckerResult res = null; int n; double initDistNew[] = null; StateValues probs = null; // TODO: BSCC computation // Store num states n = dtmc.getNumStates(); // Build initial distribution (if not specified) if (initDist == null) { initDistNew = new double[n]; for (int in : dtmc.getInitialStates()) { initDistNew[in] = 1 / dtmc.getNumInitialStates(); } } else { initDistNew = initDist; throw new PrismException("Not implemented yet"); // TODO } // Compute transient probabilities res = computeSteadyStateProbs(dtmc, initDistNew); probs = StateValues.createFromDoubleArray(res.soln); return probs; } /** * Compute transient probability distribution (forwards). * Optionally, use the passed in vector initDist as the initial probability distribution (time step 0). * If null, start from initial state (or uniform distribution over multiple initial states). * For reasons of efficiency, when a vector is passed in, it will be trampled over, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param k Time step * @param initDist Initial distribution (will be overwritten) */ public StateValues doTransient(DTMC dtmc, int k, double initDist[]) throws PrismException { throw new PrismException("Not implemented yet"); } // Numerical computation functions /** * Compute reachability probabilities. * i.e. compute the probability of reaching a state in {@code target}. * @param dtmc The DTMC * @param target Target states */ public ModelCheckerResult computeReachProbs(DTMC dtmc, BitSet target) throws PrismException { return computeReachProbs(dtmc, null, target, null, null); } /** * Compute until probabilities. * i.e. compute the probability of reaching a state in {@code target}, * while remaining in those in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states */ public ModelCheckerResult computeUntilProbs(DTMC dtmc, BitSet remain, BitSet target) throws PrismException { return computeReachProbs(dtmc, remain, target, null, null); } /** * Compute reachability/until probabilities. * i.e. compute the min/max probability of reaching a state in {@code target}, * while remaining in those in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param init Optionally, an initial solution vector (may be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ public ModelCheckerResult computeReachProbs(DTMC dtmc, BitSet remain, BitSet target, double init[], BitSet known) throws PrismException { ModelCheckerResult res = null; BitSet no, yes; int i, n, numYes, numNo; long timer, timerProb0, timerProb1; // Check for some unsupported combinations if (solnMethod == SolnMethod.VALUE_ITERATION && valIterDir == ValIterDir.ABOVE && !(precomp && prob0)) { throw new PrismException("Precomputation (Prob0) must be enabled for value iteration from above"); } // Start probabilistic reachability timer = System.currentTimeMillis(); mainLog.println("Starting probabilistic reachability..."); // Check for deadlocks in non-target state (because breaks e.g. prob1) dtmc.checkForDeadlocks(target); // Store num states n = dtmc.getNumStates(); // Optimise by enlarging target set (if more info is available) if (init != null && known != null) { BitSet targetNew = new BitSet(n); for (i = 0; i < n; i++) { targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 1.0)); } target = targetNew; } // Precomputation timerProb0 = System.currentTimeMillis(); if (precomp && prob0) { no = prob0(dtmc, remain, target); } else { no = new BitSet(); } timerProb0 = System.currentTimeMillis() - timerProb0; timerProb1 = System.currentTimeMillis(); if (precomp && prob1) { yes = prob1(dtmc, remain, target); } else { yes = (BitSet) target.clone(); } timerProb1 = System.currentTimeMillis() - timerProb1; // Print results of precomputation numYes = yes.cardinality(); numNo = no.cardinality(); mainLog.println("target=" + target.cardinality() + ", yes=" + numYes + ", no=" + numNo + ", maybe=" + (n - (numYes + numNo))); // Compute probabilities switch (solnMethod) { case VALUE_ITERATION: res = computeReachProbsValIter(dtmc, no, yes, init, known); break; case GAUSS_SEIDEL: res = computeReachProbsGaussSeidel(dtmc, no, yes, init, known); break; default: throw new PrismException("Unknown DTMC solution method " + solnMethod); } // Finished probabilistic reachability timer = System.currentTimeMillis() - timer; mainLog.println("Probabilistic reachability took " + timer / 1000.0 + " seconds."); // Update time taken res.timeTaken = timer / 1000.0; res.timeProb0 = timerProb0 / 1000.0; res.timePre = (timerProb0 + timerProb1) / 1000.0; return res; } /** * Prob0 precomputation algorithm. * i.e. determine the states of a DTMC which, with probability 0, * reach a state in {@code target}, while remaining in those in @{code remain}. * @param mdp The MDP * @param remain Remain in these states (optional: null means "all") * @param target Target states */ public BitSet prob0(DTMC dtmc, BitSet remain, BitSet target) { int n, iters; BitSet u, soln, unknown; boolean u_done; long timer; // Start precomputation timer = System.currentTimeMillis(); mainLog.println("Starting Prob0..."); // Special case: no target states if (target.cardinality() == 0) { soln = new BitSet(dtmc.getNumStates()); soln.set(0, dtmc.getNumStates()); return soln; } // Initialise vectors n = dtmc.getNumStates(); u = new BitSet(n); soln = new BitSet(n); // Determine set of states actually need to perform computation for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); if (remain != null) unknown.and(remain); // Fixed point loop iters = 0; u_done = false; // Least fixed point - should start from 0 but we optimise by // starting from 'target', thus bypassing first iteration u.or(target); soln.or(target); while (!u_done) { iters++; // Single step of Prob0 dtmc.prob0step(unknown, u, soln); // Check termination u_done = soln.equals(u); // u = soln u.clear(); u.or(soln); } // Negate u.flip(0, n); // Finished precomputation timer = System.currentTimeMillis() - timer; mainLog.print("Prob0"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); return u; } /** * Prob1 precomputation algorithm. * i.e. determine the states of a DTMC which, with probability 1, * reach a state in {@code target}, while remaining in those in @{code remain}. * @param mdp The MDP * @param remain Remain in these states (optional: null means "all") * @param target Target states */ public BitSet prob1(DTMC dtmc, BitSet remain, BitSet target) { int n, iters; BitSet u, v, soln, unknown; boolean u_done, v_done; long timer; // Start precomputation timer = System.currentTimeMillis(); mainLog.println("Starting Prob1..."); // Special case: no target states if (target.cardinality() == 0) { return new BitSet(dtmc.getNumStates()); } // Initialise vectors n = dtmc.getNumStates(); u = new BitSet(n); v = new BitSet(n); soln = new BitSet(n); // Determine set of states actually need to perform computation for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); if (remain != null) unknown.and(remain); // Nested fixed point loop iters = 0; u_done = false; // Greatest fixed point u.set(0, n); while (!u_done) { v_done = false; // Least fixed point - should start from 0 but we optimise by // starting from 'target', thus bypassing first iteration v.clear(); v.or(target); soln.clear(); soln.or(target); while (!v_done) { iters++; // Single step of Prob1 dtmc.prob1step(unknown, u, v, soln); // Check termination (inner) v_done = soln.equals(v); // v = soln v.clear(); v.or(soln); } // Check termination (outer) u_done = v.equals(u); // u = v u.clear(); u.or(v); } // Finished precomputation timer = System.currentTimeMillis() - timer; mainLog.print("Prob1"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); return u; } /** * Compute reachability probabilities using value iteration. * @param dtmc The DTMC * @param no Probability 0 states * @param yes Probability 1 states * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachProbsValIter(DTMC dtmc, BitSet no, BitSet yes, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], soln2[], tmpsoln[], initVal; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting value iteration..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal // where initVal is 0.0 or 1.0, depending on whether we converge from below/above. initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0; if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(yes); unknown.andNot(no); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply dtmc.mvMult(soln, soln2, unknown, false); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; mainLog.print("Value iteration"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute reachability probabilities using Gauss-Seidel. * @param dtmc The DTMC * @param no Probability 0 states * @param yes Probability 1 states * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachProbsGaussSeidel(DTMC dtmc, BitSet no, BitSet yes, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], initVal, maxDiff; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting Gauss-Seidel..."); // Store num states n = dtmc.getNumStates(); // Create solution vector soln = (init == null) ? new double[n] : init; // Initialise solution vector. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value; (4) initVal // where initVal is 0.0 or 1.0, depending on whether we converge from below/above. initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0; if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(yes); unknown.andNot(no); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply maxDiff = dtmc.mvMultGS(soln, unknown, false, termCrit == TermCrit.ABSOLUTE); // Check termination done = maxDiff < termCritParam; } // Finished Gauss-Seidel timer = System.currentTimeMillis() - timer; mainLog.print("Gauss-Seidel"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute bounded reachability probabilities. * i.e. compute the probability of reaching a state in {@code target} within k steps. * @param dtmc The DTMC * @param target Target states * @param k Bound */ public ModelCheckerResult computeBoundedReachProbs(DTMC dtmc, BitSet target, int k) throws PrismException { return computeBoundedReachProbs(dtmc, null, target, k, null, null); } /** * Compute bounded until probabilities. * i.e. compute the probability of reaching a state in {@code target}, * within k steps, and while remaining in states in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param k Bound */ public ModelCheckerResult computeBoundedUntilProbs(DTMC dtmc, BitSet remain, BitSet target, int k) throws PrismException { return computeBoundedReachProbs(dtmc, remain, target, k, null, null); } /** * Compute bounded reachability/until probabilities. * i.e. compute the probability of reaching a state in {@code target}, * within k steps, and while remaining in states in @{code remain}. * @param dtmc The DTMC * @param remain Remain in these states (optional: null means "all") * @param target Target states * @param k Bound * @param init Initial solution vector - pass null for default * @param results Optional array of size b+1 to store (init state) results for each step (null if unused) */ public ModelCheckerResult computeBoundedReachProbs(DTMC dtmc, BitSet remain, BitSet target, int k, double init[], double results[]) throws PrismException { // TODO: implement until ModelCheckerResult res = null; int i, n, iters; double soln[], soln2[], tmpsoln[]; long timer; // Start bounded probabilistic reachability timer = System.currentTimeMillis(); mainLog.println("Starting bounded probabilistic reachability..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use passed in initial vector, if present if (init != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0; } // Store intermediate results if required // (compute min/max value over initial states for first step) if (results != null) { // TODO: whether this is min or max should be specified somehow results[0] = Utils.minMaxOverArraySubset(soln2, dtmc.getInitialStates(), true); } // Start iterations iters = 0; while (iters < k) { iters++; // Matrix-vector multiply dtmc.mvMult(soln, soln2, target, true); // Store intermediate results if required // (compute min/max value over initial states for this step) if (results != null) { // TODO: whether this is min or max should be specified somehow results[iters] = Utils.minMaxOverArraySubset(soln2, dtmc.getInitialStates(), true); } // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished bounded probabilistic reachability timer = System.currentTimeMillis() - timer; mainLog.print("Bounded probabilistic reachability"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.lastSoln = soln2; res.numIters = iters; res.timeTaken = timer / 1000.0; res.timePre = 0.0; return res; } /** * Compute expected reachability rewards. * @param dtmc The DTMC * @param mcRewards The rewards * @param target Target states */ public ModelCheckerResult computeReachRewards(DTMC dtmc, MCRewards mcRewards, BitSet target) throws PrismException { return computeReachRewards(dtmc, mcRewards, target, null, null); } /** * Compute expected reachability rewards. * @param dtmc The DTMC * @param mcRewards The rewards * @param target Target states * @param init Optionally, an initial solution vector (may be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ public ModelCheckerResult computeReachRewards(DTMC dtmc, MCRewards mcRewards, BitSet target, double init[], BitSet known) throws PrismException { ModelCheckerResult res = null; BitSet inf; int i, n, numTarget, numInf; long timer, timerProb1; // Start expected reachability timer = System.currentTimeMillis(); mainLog.println("Starting expected reachability..."); // Check for deadlocks in non-target state (because breaks e.g. prob1) dtmc.checkForDeadlocks(target); // Store num states n = dtmc.getNumStates(); // Optimise by enlarging target set (if more info is available) if (init != null && known != null) { BitSet targetNew = new BitSet(n); for (i = 0; i < n; i++) { targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 0.0)); } target = targetNew; } // Precomputation (not optional) timerProb1 = System.currentTimeMillis(); inf = prob1(dtmc, null, target); inf.flip(0, n); timerProb1 = System.currentTimeMillis() - timerProb1; // Print results of precomputation numTarget = target.cardinality(); numInf = inf.cardinality(); mainLog.println("target=" + numTarget + ", inf=" + numInf + ", rest=" + (n - (numTarget + numInf))); // Compute rewards switch (solnMethod) { case VALUE_ITERATION: res = computeReachRewardsValIter(dtmc, mcRewards, target, inf, init, known); break; default: throw new PrismException("Unknown DTMC solution method " + solnMethod); } // Finished expected reachability timer = System.currentTimeMillis() - timer; mainLog.println("Expected reachability took " + timer / 1000.0 + " seconds."); // Update time taken res.timeTaken = timer / 1000.0; res.timePre = timerProb1 / 1000.0; return res; } /** * Compute expected reachability rewards using value iteration. * @param dtmc The DTMC * @param mcRewards The rewards * @param target Target states * @param inf States for which reward is infinite * @param init Optionally, an initial solution vector (will be overwritten) * @param known Optionally, a set of states for which the exact answer is known * Note: if 'known' is specified (i.e. is non-null, 'init' must also be given and is used for the exact values. */ protected ModelCheckerResult computeReachRewardsValIter(DTMC dtmc, MCRewards mcRewards, BitSet target, BitSet inf, double init[], BitSet known) throws PrismException { ModelCheckerResult res; BitSet unknown; int i, n, iters; double soln[], soln2[], tmpsoln[]; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting value iteration..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) soln = new double[n]; soln2 = (init == null) ? new double[n] : init; // Initialise solution vectors. Use (where available) the following in order of preference: // (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial value; (4) 0.0 if (init != null) { if (known != null) { for (i = 0; i < n; i++) soln[i] = soln2[i] = known.get(i) ? init[i] : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i]; } } else { for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0; } // Determine set of states actually need to compute values for unknown = new BitSet(); unknown.set(0, n); unknown.andNot(target); unknown.andNot(inf); if (known != null) unknown.andNot(known); // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { //mainLog.println(soln); iters++; // Matrix-vector multiply dtmc.mvMultRew(soln, mcRewards, soln2, unknown, false); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; mainLog.print("Value iteration"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute steady-state probabilities * i.e. compute the long-run probability of being in each state, * assuming the initial distribution {@code initDist}. * For space efficiency, the initial distribution vector will be modified and values over-written, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param initDist Initial distribution (will be overwritten) */ public ModelCheckerResult computeSteadyStateProbs(DTMC dtmc, double initDist[]) throws PrismException { ModelCheckerResult res; int n, iters; double soln[], soln2[], tmpsoln[]; boolean done; long timer; // Start value iteration timer = System.currentTimeMillis(); mainLog.println("Starting value iteration..."); // Store num states n = dtmc.getNumStates(); // Create solution vector(s) // For soln, we just use init (since we are free to modify this vector) soln = initDist; soln2 = new double[n]; // No need to initialise solution vectors // (soln is done, soln2 will be immediately overwritten) // Start iterations iters = 0; done = false; while (!done && iters < maxIters) { iters++; // Matrix-vector multiply dtmc.vmMult(soln, soln2); // Check termination done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE); // Swap vectors for next iter tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // Finished value iteration timer = System.currentTimeMillis() - timer; mainLog.print("Value iteration"); mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds."); // Return results res = new ModelCheckerResult(); res.soln = soln; res.numIters = iters; res.timeTaken = timer / 1000.0; return res; } /** * Compute transient probabilities * i.e. compute the probability of being in each state at time step {@code k}, * assuming the initial distribution {@code initDist}. * For space efficiency, the initial distribution vector will be modified and values over-written, * so if you wanted it, take a copy. * @param dtmc The DTMC * @param k Time step * @param initDist Initial distribution (will be overwritten) */ public ModelCheckerResult computeTransientProbs(DTMC dtmc, int k, double initDist[]) throws PrismException { throw new PrismException("Not implemented yet"); } /** * Simple test program. */ public static void main(String args[]) { DTMCModelChecker mc; DTMCSimple dtmc; ModelCheckerResult res; BitSet target; Map labels; try { mc = new DTMCModelChecker(); dtmc = new DTMCSimple(); dtmc.buildFromPrismExplicit(args[0]); //System.out.println(dtmc); labels = mc.loadLabelsFile(args[1]); //System.out.println(labels); target = labels.get(args[2]); if (target == null) throw new PrismException("Unknown label \"" + args[2] + "\""); for (int i = 3; i < args.length; i++) { if (args[i].equals("-nopre")) mc.setPrecomp(false); } res = mc.computeReachProbs(dtmc, target); System.out.println(res.soln[0]); } catch (PrismException e) { System.out.println(e); } } }