// herman's self stabilising algorithm [Her90] // gxn/dxp 13/07/02 // the procotol is synchronous with no nondeterminism (a DTMC) dtmc const double p = 0.5; // module for process 1 module process1 // Boolean variable for process 1 x1 : [0..1]; [step] (x1=x13) -> p : (x1'=0) + 1-p : (x1'=1); [step] !(x1=x13) -> (x1'=x13); endmodule // add further processes through renaming module process2 = process1 [ x1=x2, x13=x1 ] endmodule module process3 = process1 [ x1=x3, x13=x2 ] endmodule module process4 = process1 [ x1=x4, x13=x3 ] endmodule module process5 = process1 [ x1=x5, x13=x4 ] endmodule module process6 = process1 [ x1=x6, x13=x5 ] endmodule module process7 = process1 [ x1=x7, x13=x6 ] endmodule module process8 = process1 [ x1=x8, x13=x7 ] endmodule module process9 = process1 [ x1=x9, x13=x8 ] endmodule module process10 = process1 [ x1=x10, x13=x9 ] endmodule module process11 = process1 [ x1=x11, x13=x10 ] endmodule module process12 = process1 [ x1=x12, x13=x11 ] endmodule module process13 = process1 [ x1=x13, x13=x12 ] endmodule // cost - 1 in each state (expected number of steps) rewards "steps" true : 1; endrewards // set of initial states: all (i.e. any possible initial configuration of tokens) init true endinit // formula, for use in properties: number of tokens // (i.e. number of processes that have the same value as the process to their left) formula num_tokens = (x1=x2?1:0)+(x2=x3?1:0)+(x3=x4?1:0)+(x4=x5?1:0)+(x5=x6?1:0)+(x6=x7?1:0)+(x7=x8?1:0)+(x8=x9?1:0)+(x9=x10?1:0)+(x10=x11?1:0)+(x11=x12?1:0)+(x12=x13?1:0)+(x13=x1?1:0);