//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford, formerly University of Birmingham) // * Joachim Klein (TU Dresden) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== // includes #include "PrismHybrid.h" #include #include #include #include #include #include #include "sparse.h" #include "hybrid.h" #include "PrismHybridGlob.h" #include "jnipointer.h" #include "prism.h" #include "Measures.h" #include "ExportIterations.h" #include "IntervalIteration.h" #include #include // local prototypes static void power_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose); static void power_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset); static void power_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset); // globals (used by local functions) static HDDNode *zero; static int num_levels; static bool compact_sm; static double *sm_dist; static int sm_dist_shift; static int sm_dist_mask; static double *soln = NULL, *soln2 = NULL; //------------------------------------------------------------------------------ // solve the linear equation system Ax=x with the Power method, interval variant // in addition, solutions may be provided for additional states in the vector b // these states are assumed not to have non-zero rows in the matrix A JNIEXPORT jlong __jlongpointer JNICALL Java_hybrid_PrismHybrid_PH_1PowerInterval ( JNIEnv *env, jclass cls, jlong __jlongpointer _odd, // odd jlong __jlongpointer rv, // row vars jint num_rvars, jlong __jlongpointer cv, // col vars jint num_cvars, jlong __jlongpointer _a, // matrix A jlong __jlongpointer _b, // vector b (if null, assume all zero) jlong __jlongpointer _lower, // lower bound values jlong __jlongpointer _upper, // upper bound values jboolean transpose, // transpose A? (i.e. solve xA=x not Ax=x?) jint flags ) { // cast function parameters ODDNode *odd = jlong_to_ODDNode(_odd); // odd DdNode **rvars = jlong_to_DdNode_array(rv); // row vars DdNode **cvars = jlong_to_DdNode_array(cv); // col vars DdNode *a = jlong_to_DdNode(_a); // matrix A DdNode *b = jlong_to_DdNode(_b); // vector b DdNode *lower = jlong_to_DdNode(_lower); // lower bound values DdNode *upper = jlong_to_DdNode(_upper); // upper bound values // model stats int n; // flags bool compact_b; // matrix mtbdd HDDMatrix *hddm = NULL; HDDNode *hdd = NULL; // vectors double *b_vec = NULL, *tmpsoln = NULL; double *soln_below = NULL, *soln_below2 = NULL, *soln_above = NULL, *soln_above2 = NULL; DistVector *b_dist = NULL; // timing stuff long start1, start2, start3, stop; double time_taken, time_for_setup, time_for_iters; // misc int i, iters; double kb, kbt; bool done; // measure for convergence termination check MeasureSupNormInterval measure(term_crit == TERM_CRIT_RELATIVE); IntervalIteration helper(flags); // exception handling around whole function try { // start clocks start1 = start2 = util_cpu_time(); // get number of states n = odd->eoff + odd->toff; // make local copy of a Cudd_Ref(a); // build hdd for matrix PH_PrintToMainLog(env, "\nBuilding hybrid MTBDD matrix... "); hddm = build_hdd_matrix(a, rvars, cvars, num_rvars, odd, true, transpose); hdd = hddm->top; zero = hddm->zero; num_levels = hddm->num_levels; kb = hddm->mem_nodes; kbt = kb; PH_PrintToMainLog(env, "[levels=%d, nodes=%d] ", hddm->num_levels, hddm->num_nodes); PH_PrintMemoryToMainLog(env, "[", kb, "]\n"); // add sparse matrices PH_PrintToMainLog(env, "Adding explicit sparse matrices... "); add_sparse_matrices(hddm, compact, false, transpose); compact_sm = hddm->compact_sm; if (compact_sm) { sm_dist = hddm->dist; sm_dist_shift = hddm->dist_shift; sm_dist_mask = hddm->dist_mask; } kb = hddm->mem_sm; kbt += kb; PH_PrintToMainLog(env, "[levels=%d, num=%d%s] ", hddm->l_sm, hddm->num_sm, compact_sm?", compact":""); PH_PrintMemoryToMainLog(env, "[", kb, "]\n"); // build b vector (if present) if (b != NULL) { PH_PrintToMainLog(env, "Creating vector for RHS... "); b_vec = mtbdd_to_double_vector(ddman, b, rvars, num_rvars, odd); // try and convert to compact form if required compact_b = false; if (compact) { if ((b_dist = double_vector_to_dist(b_vec, n))) { compact_b = true; delete[] b_vec; b_vec = NULL; } } kb = (!compact_b) ? n*8.0/1024.0 : (b_dist->num_dist*8.0+n*2.0)/1024.0; kbt += kb; if (compact_b) PH_PrintToMainLog(env, "[dist=%d, compact] ", b_dist->num_dist); PH_PrintMemoryToMainLog(env, "[", kb, "]\n"); } // create solution/iteration vectors PH_PrintToMainLog(env, "Allocating iteration vectors... "); soln_below = mtbdd_to_double_vector(ddman, lower, rvars, num_rvars, odd); soln_above = mtbdd_to_double_vector(ddman, upper, rvars, num_rvars, odd); soln_below2 = new double[n]; soln_above2 = new double[n]; kb = n*8.0/1024.0; kbt += 4*kb; PH_PrintMemoryToMainLog(env, "[4 x ", kb, "]\n"); // print total memory usage PH_PrintMemoryToMainLog(env, "TOTAL: [", kbt, "]\n"); std::unique_ptr iterationExport; if (PH_GetFlagExportIterations()) { iterationExport.reset(new ExportIterations("PH_Power_Interval")); PH_PrintToMainLog(env, "Exporting iterations to %s\n", iterationExport->getFileName().c_str()); iterationExport->exportVector(soln_below, n, 0); iterationExport->exportVector(soln_above, n, 1); } // get setup time stop = util_cpu_time(); time_for_setup = (double)(stop - start2)/1000; start2 = stop; start3 = stop; // start iterations iters = 0; done = false; PH_PrintToMainLog(env, "\nStarting iterations...\n"); while (!done && iters < max_iters) { iters++; // matrix multiply // initialise vector (below & above) if (b == NULL) { for (i = 0; i < n; i++) { soln_below2[i] = soln_above2[i] = 0.0; } } else if (!compact_b) { for (i = 0; i < n; i++) { soln_below2[i] = soln_above2[i] = b_vec[i]; } } else { for (i = 0; i < n; i++) { soln_below2[i] = soln_above2[i] = b_dist->dist[b_dist->ptrs[i]]; } } // set global solution vector to below soln = soln_below; soln2 = soln_below2; // do matrix vector multiply bit (below) power_rec(hdd, 0, 0, 0, transpose); if (helper.flag_ensure_monotonic_from_below()) { helper.ensureMonotonicityFromBelow(soln, soln2, n); } // set global solution vector to above soln = soln_above; soln2 = soln_above2; // do matrix vector multiply bit (above) power_rec(hdd, 0, 0, 0, transpose); if (helper.flag_ensure_monotonic_from_above()) { helper.ensureMonotonicityFromAbove(soln, soln2, n); } if (iterationExport) { iterationExport->exportVector(soln_below, n, 0); iterationExport->exportVector(soln_above, n, 1); } // check convergence measure.reset(); measure.measure(soln_below2, soln_above2, n); if (measure.value() < term_crit_param) { PH_PrintToMainLog(env, "Max %sdiff between upper and lower bound on convergence: %G", measure.isRelative()?"relative ":"", measure.value()); done = true; } // print occasional status update if ((util_cpu_time() - start3) > UPDATE_DELAY) { PH_PrintToMainLog(env, "Iteration %d: max %sdiff=%f", iters, measure.isRelative()?"relative ":"", measure.value()); PH_PrintToMainLog(env, ", %.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000)); start3 = util_cpu_time(); } // prepare for next iteration tmpsoln = soln_below; soln_below = soln_below2; soln_below2 = tmpsoln; tmpsoln = soln_above; soln_above = soln_above2; soln_above2 = tmpsoln; } // stop clocks stop = util_cpu_time(); time_for_iters = (double)(stop - start2)/1000; time_taken = (double)(stop - start1)/1000; // print iters/timing info PH_PrintToMainLog(env, "\nPower method (interval iteration): %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup); // if the iterative method didn't terminate, this is an error if (!done) { delete[] soln_below; soln_below = NULL; PH_SetErrorMessage("Iterative method (interval iteration) did not converge within %d iterations.\nConsider using a different numerical method or increasing the maximum number of iterations", iters); PH_PrintToMainLog(env, "Max remaining %sdiff between upper and lower bound on convergence: %G", measure.isRelative()?"relative ":"", measure.value()); } if (helper.flag_select_midpoint() && soln_below) { // we did converge, select midpoint helper.selectMidpoint(soln_below, soln_above, n); if (iterationExport) { // export result vector as below and above iterationExport->exportVector(soln_below, n, 0); iterationExport->exportVector(soln_below, n, 1); } } // catch exceptions: register error, free memory } catch (std::bad_alloc e) { PH_SetErrorMessage("Out of memory"); if (soln_below) delete[] soln_below; soln = 0; } // free memory if (a) Cudd_RecursiveDeref(ddman, a); if (hddm) delete hddm; if (b_vec) delete[] b_vec; if (b_dist) delete b_dist; if (soln2) delete soln_below2; if (soln_above) delete soln_above; if (soln_above2) delete soln_above2; return ptr_to_jlong(soln_below); } //------------------------------------------------------------------------------ static void power_rec(HDDNode *hdd, int level, int row_offset, int col_offset, bool transpose) { HDDNode *e, *t; // if it's the zero node if (hdd == zero) { return; } // or if we've reached a submatrix // (check for non-null ptr but, equivalently, we could just check if level==l_sm) else if (hdd->sm.ptr) { if (!compact_sm) { power_rm((RMSparseMatrix *)hdd->sm.ptr, row_offset, col_offset); } else { power_cmsr((CMSRSparseMatrix *)hdd->sm.ptr, row_offset, col_offset); } return; } // or if we've reached the bottom else if (level == num_levels) { //printf("(%d,%d)=%f\n", row_offset, col_offset, hdd->type.val); soln2[row_offset] += soln[col_offset] * hdd->type.val; return; } // otherwise recurse e = hdd->type.kids.e; if (e != zero) { if (!transpose) { power_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose); power_rec(e->type.kids.t, level+1, row_offset, col_offset+e->off.val, transpose); } else { power_rec(e->type.kids.e, level+1, row_offset, col_offset, transpose); power_rec(e->type.kids.t, level+1, row_offset+e->off.val, col_offset, transpose); } } t = hdd->type.kids.t; if (t != zero) { if (!transpose) { power_rec(t->type.kids.e, level+1, row_offset+hdd->off.val, col_offset, transpose); power_rec(t->type.kids.t, level+1, row_offset+hdd->off.val, col_offset+t->off.val, transpose); } else { power_rec(t->type.kids.e, level+1, row_offset, col_offset+hdd->off.val, transpose); power_rec(t->type.kids.t, level+1, row_offset+t->off.val, col_offset+hdd->off.val, transpose); } } } //----------------------------------------------------------------------------------- static void power_rm(RMSparseMatrix *rmsm, int row_offset, int col_offset) { int i2, j2, l2, h2; int sm_n = rmsm->n; int sm_nnz = rmsm->nnz; double *sm_non_zeros = rmsm->non_zeros; unsigned char *sm_row_counts = rmsm->row_counts; int *sm_row_starts = (int *)rmsm->row_counts; bool sm_use_counts = rmsm->use_counts; unsigned int *sm_cols = rmsm->cols; // loop through rows of submatrix l2 = sm_nnz; h2 = 0; for (i2 = 0; i2 < sm_n; i2++) { // loop through entries in this row if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; } else { l2 = h2; h2 += sm_row_counts[i2]; } for (j2 = l2; j2 < h2; j2++) { soln2[row_offset + i2] += soln[col_offset + sm_cols[j2]] * sm_non_zeros[j2]; //printf("(%d,%d)=%f\n", row_offset + i2, col_offset + sm_cols[j2], sm_non_zeros[j2]); } } } //----------------------------------------------------------------------------------- static void power_cmsr(CMSRSparseMatrix *cmsrsm, int row_offset, int col_offset) { int i2, j2, l2, h2; int sm_n = cmsrsm->n; int sm_nnz = cmsrsm->nnz; unsigned char *sm_row_counts = cmsrsm->row_counts; int *sm_row_starts = (int *)cmsrsm->row_counts; bool sm_use_counts = cmsrsm->use_counts; unsigned int *sm_cols = cmsrsm->cols; // loop through rows of submatrix l2 = sm_nnz; h2 = 0; for (i2 = 0; i2 < sm_n; i2++) { // loop through entries in this row if (!sm_use_counts) { l2 = sm_row_starts[i2]; h2 = sm_row_starts[i2+1]; } else { l2 = h2; h2 += sm_row_counts[i2]; } for (j2 = l2; j2 < h2; j2++) { soln2[row_offset + i2] += soln[col_offset + (int)(sm_cols[j2] >> sm_dist_shift)] * sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]; //printf("(%d,%d)=%f\n", row_offset + i2, col_offset + (int)(sm_cols[j2] >> sm_dist_shift), sm_dist[(int)(sm_cols[j2] & sm_dist_mask)]); } } } //------------------------------------------------------------------------------