// randomized dining philosophers [LR81] // dxp/gxn 23/01/02 // model which does not require fairness // remove the possibility of loops: // (1) cannot stay in thinking // (2) if first fork not free then cannot move (another philosopher must more) mdp // atomic formulae // left fork free and right fork free resp. formula lfree = p2=0..4,6,10; formula rfree = p10=0..3,5,7,11; module phil1 p1: [0..11]; [] p1=0 -> (p1'=1); // trying [] p1=1 -> 0.5 : (p1'=2) + 0.5 : (p1'=3); // draw randomly [] p1=2 & lfree -> (p1'=4); // pick up left [] p1=3 & rfree -> (p1'=5); // pick up right [] p1=4 & rfree -> (p1'=8); // pick up right (got left) [] p1=4 & !rfree -> (p1'=6); // right not free (got left) [] p1=5 & lfree -> (p1'=8); // pick up left (got right) [] p1=5 & !lfree -> (p1'=7); // left not free (got right) [] p1=6 -> (p1'=1); // put down left [] p1=7 -> (p1'=1); // put down right [] p1=8 -> (p1'=9); // move to eating (got forks) [] p1=9 -> (p1'=10); // finished eating and put down left [] p1=9 -> (p1'=11); // finished eating and put down right [] p1=10 -> (p1'=0); // put down right and return to think [] p1=11 -> (p1'=0); // put down left and return to think endmodule // construct further modules through renaming module phil2 = phil1 [p1=p2, p2=p3, p10=p1] endmodule module phil3 = phil1 [p1=p3, p2=p4, p10=p2] endmodule module phil4 = phil1 [p1=p4, p2=p5, p10=p3] endmodule module phil5 = phil1 [p1=p5, p2=p6, p10=p4] endmodule module phil6 = phil1 [p1=p6, p2=p7, p10=p5] endmodule module phil7 = phil1 [p1=p7, p2=p8, p10=p6] endmodule module phil8 = phil1 [p1=p8, p2=p9, p10=p7] endmodule module phil9 = phil1 [p1=p9, p2=p10, p10=p8] endmodule module phil10 = phil1 [p1=p10, p2=p1, p10=p9] endmodule // rewards (number of steps) rewards [] true : 1; endrewards