//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford, formerly University of Birmingham) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== // includes #include "PrismMTBDD.h" #include #include #include #include #include #include "PrismMTBDDGlob.h" #include "jnipointer.h" //------------------------------------------------------------------------------ JNIEXPORT jlong __pointer JNICALL Java_mtbdd_PrismMTBDD_PM_1NondetInstReward ( JNIEnv *env, jclass cls, jlong __pointer t, // trans matrix jlong __pointer sr, // state rewards jlong __pointer od, // odd jlong __pointer ndm, // nondeterminism mask jlong __pointer rv, // row vars jint num_rvars, jlong __pointer cv, // col vars jint num_cvars, jlong __pointer ndv, // nondet vars jint num_ndvars, jint bound, // time bound jboolean min, // min or max probabilities (true = min, false = max) jlong __pointer in ) { // cast function parameters DdNode *trans = jlong_to_DdNode(t); // trans matrix DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards ODDNode *odd = jlong_to_ODDNode(od); // odd DdNode *mask = jlong_to_DdNode(ndm); // nondeterminism mask DdNode **rvars = jlong_to_DdNode_array(rv); // row vars DdNode **cvars = jlong_to_DdNode_array(cv); // col vars DdNode **ndvars = jlong_to_DdNode_array(ndv); // nondet vars DdNode *init = jlong_to_DdNode(in); // mtbdds DdNode *new_mask, *sol, *tmp; // timing stuff long start1, start2, start3, stop; double time_taken, time_for_setup, time_for_iters; // misc int iters; // start clocks start1 = start2 = util_cpu_time(); // need to change mask because rewards are not necessarily in the range 0..1 Cudd_Ref(mask); new_mask = DD_ITE(ddman, mask, DD_PlusInfinity(ddman), DD_Constant(ddman, 0)); // initial solution is the state rewards Cudd_Ref(state_rewards); sol = state_rewards; // get setup time stop = util_cpu_time(); time_for_setup = (double)(stop - start2)/1000; start2 = stop; // start iterations iters = 0; PM_PrintToMainLog(env, "\nStarting iterations...\n"); // note that we ignore max_iters as we know how any iterations _should_ be performed for (iters = 0; iters < bound; iters++) { // PM_PrintToMainLog(env, "Iteration %d: ", iters); // start3 = util_cpu_time(); // matrix-vector multiply Cudd_Ref(sol); tmp = DD_PermuteVariables(ddman, sol, rvars, cvars, num_rvars); Cudd_Ref(trans); tmp = DD_MatrixMultiply(ddman, trans, tmp, cvars, num_cvars, MM_BOULDER); // do min/max if (min) { // mask stuff Cudd_Ref(new_mask); tmp = DD_Apply(ddman, APPLY_MAX, tmp, new_mask); // abstract tmp = DD_MinAbstract(ddman, tmp, ndvars, num_ndvars); } else { // abstract tmp = DD_MaxAbstract(ddman, tmp, ndvars, num_ndvars); } // prepare for next iteration Cudd_RecursiveDeref(ddman, sol); sol = tmp; // Cudd_Ref(sol); // Cudd_Ref(init); // tmp = DD_Apply(ddman, APPLY_TIMES, sol, init); // tmp = DD_SumAbstract(ddman, tmp, rvars, num_rvars); // PM_PrintToMainLog(env, "%i: %f (%0.f, %0d)\n", iters, Cudd_V(tmp), DD_GetNumMinterms(ddman, sol, num_rvars), DD_GetNumNodes(ddman, sol)); // Cudd_RecursiveDeref(ddman, tmp); // PM_PrintToMainLog(env, "%.2f %.2f sec\n", ((double)(util_cpu_time() - start3)/1000), ((double)(util_cpu_time() - start2)/1000)/iters); } // stop clocks stop = util_cpu_time(); time_for_iters = (double)(stop - start2)/1000; time_taken = (double)(stop - start1)/1000; // print iterations/timing info PM_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup); // free memory Cudd_RecursiveDeref(ddman, new_mask); return ptr_to_jlong(sol); } //------------------------------------------------------------------------------