// Properties based on those from [HHK00] // left_operational_i : left_n>=i & toleft_n // right_operational_i : right_n>=i & toright_n // operational_i : (left_n+right_n)>=i & toleft_n & line_n & toright_n // minimum_k : left_operational_k | right_operational_k | operational_k // premium = minimum_N label "minimum" = (left_n>=k & toleft_n) | (right_n>=k & toright_n) | ((left_n+right_n)>=k & toleft_n & line_n & toright_n); label "premium" = (left_n>=left_mx & toleft_n) | (right_n>=right_mx & toright_n) | ((left_n+right_n)>=left_mx & toleft_n & line_n & toright_n); const double T; // In the long run, the probability that premium QoS will be delivered S=? [ "premium" ] // In the long run, the chance that QoS is below minimum S=? [ !"minimum" ] // The system will always be able to offer premium QoS at some point in the future P>=1 [ true U "premium" ] // The chance that QoS drops below minimum quality within T time units // (from the initial state) P=? [ true U<=T !"minimum" ] // If facing insufficient QoS, the maximum probability of facing // the same problem after T time units P=? [ true U[T,T] !"minimum" {!"minimum"}{max} ] // The minimum probability of going from minimum QoS to premium QoS // within T time units P=? [ true U<=T "premium" {"minimum"}{min} ] // The minimum probability of going from minimum QoS to premium QoS // within T time units without violating the minimum QoS constraint along the way P=? [ "minimum" U<=T "premium" {"minimum"}{min} ] // The maximum probability that it takes more than T time units // to recover from insufficient QoS P=? [ !"minimum" U>=T "minimum" {!"minimum"}{max} ] // The minimum percentage of operational workstations at time T // when starting from below minimum QoS R{"percent_op"}=?[ I=T {!"minimum"}{min} ] // The expected time (from the initial state) // that the system spends below minimum QoS until time T R{"time_not_min"}=?[ C<=T ] // The expected number of repairs by time T (starting in the initial state) R{"num_repairs"}=?[ C<=T ]