//============================================================================== // // Copyright (c) 2002- // Authors: // * Dave Parker (University of Oxford, formerly University of Birmingham) // //------------------------------------------------------------------------------ // // This file is part of PRISM. // // PRISM is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PRISM is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with PRISM; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //============================================================================== // includes #include "PrismSparse.h" #include #include #include #include #include #include #include "sparse.h" #include "PrismSparseGlob.h" #include "jnipointer.h" #include "prism.h" #include //------------------------------------------------------------------------------ JNIEXPORT jlong __jlongpointer JNICALL Java_sparse_PrismSparse_PS_1ProbInstReward ( JNIEnv *env, jclass cls, jlong __jlongpointer t, // trans matrix jlong __jlongpointer sr, // state rewards jlong __jlongpointer od, // odd jlong __jlongpointer rv, // row vars jint num_rvars, jlong __jlongpointer cv, // col vars jint num_cvars, jint bound // time bound ) { // cast function parameters DdNode *trans = jlong_to_DdNode(t); // trans matrix DdNode *state_rewards = jlong_to_DdNode(sr); // state rewards ODDNode *odd = jlong_to_ODDNode(od); // reachable states DdNode **rvars = jlong_to_DdNode_array(rv); // row vars DdNode **cvars = jlong_to_DdNode_array(cv); // col vars // model stats int n; long nnz; // flags bool compact_tr; // sparse matrix RMSparseMatrix *rmsm = NULL; CMSRSparseMatrix *cmsrsm = NULL; // vectors double *soln = NULL, *soln2 = NULL, *tmpsoln = NULL; // timing stuff long start1, start2, start3, stop; double time_taken, time_for_setup, time_for_iters; // misc int i, j, l, h, iters; double d, kb, kbt; // exception handling around whole function try { // start clocks start1 = start2 = util_cpu_time(); // get number of states n = odd->eoff + odd->toff; // build sparse matrix PS_PrintToMainLog(env, "\nBuilding sparse matrix... "); // if requested, try and build a "compact" version compact_tr = true; cmsrsm = NULL; if (compact) cmsrsm = build_cmsr_sparse_matrix(ddman, trans, rvars, cvars, num_rvars, odd); if (cmsrsm != NULL) { nnz = cmsrsm->nnz; kb = cmsrsm->mem; } // if not or if it wasn't possible, built a normal one else { compact_tr = false; rmsm = build_rm_sparse_matrix(ddman, trans, rvars, cvars, num_rvars, odd); nnz = rmsm->nnz; kb = rmsm->mem; } kbt = kb; // print some info PS_PrintToMainLog(env, "[n=%d, nnz=%d%s] ", n, nnz, compact_tr?", compact":""); PS_PrintMemoryToMainLog(env, "[", kb, "]\n"); // create solution/iteration vectors // (solution is initialised to the state rewards) PS_PrintToMainLog(env, "Allocating iteration vectors... "); soln = mtbdd_to_double_vector(ddman, state_rewards, rvars, num_rvars, odd); soln2 = new double[n]; kb = n*8.0/1024.0; kbt += 2*kb; PS_PrintMemoryToMainLog(env, "[2 x ", kb, "]\n"); // print total memory usage PS_PrintMemoryToMainLog(env, "TOTAL: [", kbt, "]\n"); // get setup time stop = util_cpu_time(); time_for_setup = (double)(stop - start2)/1000; start2 = stop; start3 = stop; // start iterations PS_PrintToMainLog(env, "\nStarting iterations...\n"); // note that we ignore max_iters as we know how any iterations _should_ be performed for (iters = 0; iters < bound; iters++) { // store local copies of stuff double *non_zeros; unsigned char *row_counts; int *row_starts; bool use_counts; unsigned int *cols; double *dist; int dist_shift; int dist_mask; if (!compact_tr) { non_zeros = rmsm->non_zeros; row_counts = rmsm->row_counts; row_starts = (int *)rmsm->row_counts; use_counts = rmsm->use_counts; cols = rmsm->cols; } else { row_counts = cmsrsm->row_counts; row_starts = (int *)cmsrsm->row_counts; use_counts = cmsrsm->use_counts; cols = cmsrsm->cols; dist = cmsrsm->dist; dist_shift = cmsrsm->dist_shift; dist_mask = cmsrsm->dist_mask; } // matrix multiply h = 0; for (i = 0; i < n; i++) { d = 0.0; if (!use_counts) { l = row_starts[i]; h = row_starts[i+1]; } else { l = h; h += row_counts[i]; } // "row major" version if (!compact_tr) { for (j = l; j < h; j++) { d += non_zeros[j] * soln[cols[j]]; } // "compact msr" version } else { for (j = l; j < h; j++) { d += dist[(int)(cols[j] & dist_mask)] * soln[(int)(cols[j] >> dist_shift)]; } } // set vector element soln2[i] = d; } // print occasional status update if ((util_cpu_time() - start3) > UPDATE_DELAY) { PS_PrintToMainLog(env, "Iteration %d (of %d): ", iters, bound); PS_PrintToMainLog(env, "%.2f sec so far\n", ((double)(util_cpu_time() - start2)/1000)); start3 = util_cpu_time(); } // prepare for next iteration tmpsoln = soln; soln = soln2; soln2 = tmpsoln; } // stop clocks stop = util_cpu_time(); time_for_iters = (double)(stop - start2)/1000; time_taken = (double)(stop - start1)/1000; // print iterations/timing info PS_PrintToMainLog(env, "\nIterative method: %d iterations in %.2f seconds (average %.6f, setup %.2f)\n", iters, time_taken, time_for_iters/iters, time_for_setup); // catch exceptions: register error, free memory } catch (std::bad_alloc e) { PS_SetErrorMessage("Out of memory"); if (soln) delete[] soln; soln = 0; } // free memory if (rmsm) delete rmsm; if (cmsrsm) delete cmsrsm; if (soln2) delete[] soln2; return ptr_to_jlong(soln); } //------------------------------------------------------------------------------