#const N# // model of dining cryptographers // gxn/dxp 15/11/06 mdp // constants used in renaming (identities of cryptographers) #for i=1:N# const int p#i# = #i#; #end# // global variable which decides who pays // (0 - master pays, i=1..N - cryptographer i pays) global pay : [0..#N#]; // module for first cryptographer module crypt1 coin1 : [0..2]; // value of its coin s1 : [0..1]; // its status (0 = not done, 1 = done) agree1 : [0..1]; // what it states (0 = disagree, 1 = agree) // flip coin [] coin1=0 -> 0.5 : (coin1'=1) + 0.5 : (coin1'=2); // make statement (once relevant coins have been flipped) // agree (coins the same and does not pay) [] s1=0 & coin1>0 & coin2>0 & coin1=coin2 & (pay!=p1) -> (s1'=1) & (agree1'=1); // disagree (coins different and does not pay) [] s1=0 & coin1>0 & coin2>0 & !(coin1=coin2) & (pay!=p1) -> (s1'=1); // disagree (coins the same and pays) [] s1=0 & coin1>0 & coin2>0 & coin1=coin2 & (pay=p1) -> (s1'=1); // agree (coins different and pays) [] s1=0 & coin1>0 & coin2>0 & !(coin1=coin2) & (pay=p1) -> (s1'=1) & (agree1'=1); // synchronising loop when finished to avoid deadlock [done] s1=1 -> true; endmodule // construct further cryptographers with renaming #for i=2:N# module crypt#i# = crypt1 [ coin1=coin#i#, s1=s#i#, agree1=agree#i#, p1=p#i#, coin2=coin#func(mod,i,N)+1# ] endmodule #end# // set of initial states // (cryptographers in their initial state, "pay" can be anything) init #& i=1:N# coin#i#=0&s#i#=0&agree#i#=0 #end# endinit