Browse Source

Refactor explicit.MDP, split generic part (independent of data type for transition probabilities) into MDPGeneric

This allows reuse of some methods in the exact / parametric engine.
master
Joachim Klein 9 years ago
committed by Dave Parker
parent
commit
f128015f5d
  1. 151
      prism/src/explicit/MDP.java
  2. 193
      prism/src/explicit/MDPGeneric.java

151
prism/src/explicit/MDP.java

@ -40,9 +40,13 @@ import explicit.rewards.MDPRewards;
import prism.PrismUtils;
/**
* Interface for classes that provide (read) access to an explicit-state MDP.
* Interface for classes that provide (read) access to an explicit-state MDP,
* where the transition probabilities are stored as double floating point values.
* <br>
* For the generic methods, e.g., the prob0 / prob1 precomputations that do not
* care about the concrete values, see {@link explicit.MDPGeneric}.
*/
public interface MDP extends NondetModel
public interface MDP extends MDPGeneric<Double>
{
/**
* Get an iterator over the transitions from choice {@code i} of state {@code s}.
@ -121,149 +125,6 @@ public interface MDP extends NondetModel
return sum.sum;
}
/**
* Perform a single step of precomputation algorithm Prob0, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all/some choices,
* there is a transition to a state in {@code u}.
* Quantification over choices is determined by {@code forall}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param forall For-all or there-exists (true=for-all, false=there-exists)
* @param result Store results here
*/
public default void prob0step(final BitSet subset, final BitSet u, final boolean forall, final BitSet result)
{
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
boolean b1 = forall; // there exists or for all
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
boolean b2 = someSuccessorsInSet(s, choice, u);
if (forall) {
if (!b2) {
b1 = false;
break;
}
} else {
if (b2) {
b1 = true;
break;
}
}
}
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1A, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all choices,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param result Store results here
*/
public default void prob1Astep(BitSet subset, BitSet u, BitSet v, BitSet result)
{
boolean b1;
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
b1 = true;
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
if (!(successorsSafeAndCanReach(s, choice, u, v))) {
b1 = false;
break;
}
}
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1E, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for some choice,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* Optionally, store optimal (memoryless) strategy info for 1 states.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param result Store results here
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public default void prob1Estep(BitSet subset, BitSet u, BitSet v, BitSet result, int strat[])
{
int stratCh = -1;
boolean b1;
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
b1 = false;
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
if (successorsSafeAndCanReach(s, choice, u, v)) {
b1 = true;
// If strategy generation is enabled, remember optimal choice
if (strat != null)
stratCh = choice;
break;
}
}
// If strategy generation is enabled, store optimal choice
// (only if this the first time we add the state to S^yes)
if (strat != null & b1 & !result.get(s)) {
strat[s] = stratCh;
}
// Store result
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all/some choices,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* Quantification over choices is determined by {@code forall}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param forall For-all or there-exists (true=for-all, false=there-exists)
* @param result Store results here
*/
public default void prob1step(BitSet subset, BitSet u, BitSet v, boolean forall, BitSet result)
{
boolean b1, b2;
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
b1 = forall; // there exists or for all
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
b2 = successorsSafeAndCanReach(s, choice, u, v);
if (forall) {
if (!b2) {
b1 = false;
break;
}
} else {
if (b2) {
b1 = true;
break;
}
}
}
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1 for a single state/choice,
* i.e., return whether there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* @param s State (row) index
* @param i Choice index
* @param u Set of states {@code u}
* @param v Set of states {@code v}
*/
public default boolean prob1stepSingle(int s, int i, BitSet u, BitSet v)
{
return successorsSafeAndCanReach(s, i, u, v);
}
/**
* Do a matrix-vector multiplication followed by min/max, i.e. one step of value iteration,
* i.e. for all s: result[s] = min/max_k { sum_j P_k(s,j)*vect[j] }

193
prism/src/explicit/MDPGeneric.java

@ -0,0 +1,193 @@
//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Dave Parker <david.parker@comlab.ox.ac.uk> (University of Oxford)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
package explicit;
import java.util.BitSet;
import java.util.Iterator;
import java.util.Map.Entry;
import java.util.PrimitiveIterator.OfInt;
import common.IterableStateSet;
/**
* Interface for classes that provide (read) access to an explicit-state MDP,
* gathering the generic methods, i.e., those that are independent of the
* underlying value type used for the transition probabilities.
* <br>
* This allows use of these methods e.g. in the explicit and parametric engines.
*/
public interface MDPGeneric<Value> extends NondetModel
{
/**
* Get an iterator over the transitions from choice {@code i} of state {@code s}.
*/
public Iterator<Entry<Integer, Value>> getTransitionsIterator(int s, int i);
/**
* Perform a single step of precomputation algorithm Prob0, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all/some choices,
* there is a transition to a state in {@code u}.
* Quantification over choices is determined by {@code forall}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param forall For-all or there-exists (true=for-all, false=there-exists)
* @param result Store results here
*/
public default void prob0step(final BitSet subset, final BitSet u, final boolean forall, final BitSet result)
{
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
boolean b1 = forall; // there exists or for all
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
boolean b2 = someSuccessorsInSet(s, choice, u);
if (forall) {
if (!b2) {
b1 = false;
break;
}
} else {
if (b2) {
b1 = true;
break;
}
}
}
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1A, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all choices,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param result Store results here
*/
public default void prob1Astep(BitSet subset, BitSet u, BitSet v, BitSet result)
{
boolean b1;
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
b1 = true;
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
if (!(successorsSafeAndCanReach(s, choice, u, v))) {
b1 = false;
break;
}
}
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1E, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for some choice,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* Optionally, store optimal (memoryless) strategy info for 1 states.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param result Store results here
* @param strat Storage for (memoryless) strategy choice indices (ignored if null)
*/
public default void prob1Estep(BitSet subset, BitSet u, BitSet v, BitSet result, int strat[])
{
int stratCh = -1;
boolean b1;
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
b1 = false;
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
if (successorsSafeAndCanReach(s, choice, u, v)) {
b1 = true;
// If strategy generation is enabled, remember optimal choice
if (strat != null)
stratCh = choice;
break;
}
}
// If strategy generation is enabled, store optimal choice
// (only if this the first time we add the state to S^yes)
if (strat != null & b1 & !result.get(s)) {
strat[s] = stratCh;
}
// Store result
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1, i.e., for states i in {@code subset},
* set bit i of {@code result} iff, for all/some choices,
* there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* Quantification over choices is determined by {@code forall}.
* @param subset Only compute for these states
* @param u Set of states {@code u}
* @param v Set of states {@code v}
* @param forall For-all or there-exists (true=for-all, false=there-exists)
* @param result Store results here
*/
public default void prob1step(BitSet subset, BitSet u, BitSet v, boolean forall, BitSet result)
{
boolean b1, b2;
for (OfInt it = new IterableStateSet(subset, getNumStates()).iterator(); it.hasNext();) {
final int s = it.nextInt();
b1 = forall; // there exists or for all
for (int choice = 0, numChoices = getNumChoices(s); choice < numChoices; choice++) {
b2 = successorsSafeAndCanReach(s, choice, u, v);
if (forall) {
if (!b2) {
b1 = false;
break;
}
} else {
if (b2) {
b1 = true;
break;
}
}
}
result.set(s, b1);
}
}
/**
* Perform a single step of precomputation algorithm Prob1 for a single state/choice,
* i.e., return whether there is a transition to a state in {@code v} and all transitions go to states in {@code u}.
* @param s State (row) index
* @param i Choice index
* @param u Set of states {@code u}
* @param v Set of states {@code v}
*/
public default boolean prob1stepSingle(int s, int i, BitSet u, BitSet v)
{
return successorsSafeAndCanReach(s, i, u, v);
}
}
Loading…
Cancel
Save