Browse Source

update to auto file

git-svn-id: https://www.prismmodelchecker.org/svn/prism/prism/trunk@876 bbc10eb1-c90d-0410-af57-cb519fbb1720
master
Gethin Norman 17 years ago
parent
commit
edaccf8c4b
  1. 57
      prism-examples/rabin/.rabinN.nm.pp

57
prism-examples/rabin/.rabinN.nm.pp

@ -1,19 +1,20 @@
#const N#
#const K=4+func(ceil,func(log,N,2))#
// N-processor mutual exclusion [Rab82]
// with global variables to remove sychronization
// gxn/dxp 03/12/08
// version to verify a variant of the bounded waiting property
// namely the probability a process entries the critical section given it tries
// to acheive this we have split the drawing phase into two steps, so we know
// a process will draw before it actual makes the probabilistic choice
// we have however kept the two steps atomic(no other process can move one
// the first step has been made) since otherwise the adversary can prevent the
// process from actually trying in the current round by never shcedling it again
// modified version to analyse the bounded waiting property
// more precisely we analyse the waeker property:
// "the minimum probability a process enters the critical section given the process tries"
// note we have removed the self loops to eliminate the need for fairness constraints
// we modify the model by dividing the step corresponding to a process making a draw into two steps
// this allows one to identify states where a process will draw without knowing
// what value the process will randomly pick
// these two steps are atomic (i.e. no other process can move one the first step has been made)
// as otherwise the adversary can prevent the process from actually drawing in the current round
// by not scheduling it after it has performed the first step
// to remove the need for fairness constraints we have also removed the self loops from the model
mdp
@ -21,36 +22,28 @@ mdp
const int K = #K#; // 4+ceil(log_2 N)
// global variables (all modules can read and write)
// c=0 critical section free
// c=1 critical section not free
// b current highest draw
// r current round
global c : [0..1];
global b : [0..K];
global r : [1..2];
// local variables: process i
// state: pi
// 0 remainder
// 1 trying
// 2 critical section
// current draw: bi
// current round: ri
global c : [0..1]; // 0/1 critical section free/taken
global b : [0..K]; // current highest draw
global r : [1..2]; // current round
// formula for process 1 drawing
formula draw = p1=1 & (b<b1 | r!=r1);
// formula to keep drawing phase atomic
// (can onlymove if no process is drawing
// (a process can only move if no other process is in the middle of drawing)
formula go = (#& i=2:N#draw#i#=0#end#);
module process1
p1 : [0..2];
b1 : [0..K];
r1 : [0..2];
draw1 : [0..1];
p1 : [0..2]; // local state
// 0 remainder
// 1 trying
// 2 critical section
b1 : [0..K]; // current draw: bi
r1 : [0..2]; // current round: ri
draw1 : [0..1]; // performed first step of drawing phase
// remain in remainder
// [] go & p1=0 -> (p1'=0);
@ -62,7 +55,7 @@ module process1
#end#+ #1/func(floor,func(pow,2,K-1))# : (b1'=#K#) & (r1'=r) & (b'=max(b,#K#)) & (draw1'=0);
// enter critical section and randomly set r to 1 or 2
[] go & p1=1 & b=b1 & r=r1 & c=0 -> 0.5 : (r'=1) & (c'=1) & (b'=0) & (b1'=0) & (r1'=0) & (p1'=2)
+ 0.5 : (r'=2) & (c'=1) & (b'=0) & (b1'=0) & (r1'=0) & (p1'=2);
+ 0.5 : (r'=2) & (c'=1) & (b'=0) & (b1'=0) & (r1'=0) & (p1'=2);
// loop when trying and cannot make a draw or enter critical section
// [] go & p1=1 & r1=r & b1<=b & ((c=0 & b1!=b) | c=1) -> (p1'=p1);
// leave crictical section
@ -87,5 +80,5 @@ label "one_trying" = #| i=1:N#p#i#=1#end#;
// one of the processes is in the critical section
label "one_critical" = #| i=1:N#p#i#=2#end#;
// maximum value of the bi's
// maximum current draw of the processes
formula maxb = max(b1#for i=2:N#,b#i##end#);
Loading…
Cancel
Save