Browse Source

zeroconf model added

git-svn-id: https://www.prismmodelchecker.org/svn/prism/prism/trunk@858 bbc10eb1-c90d-0410-af57-cb519fbb1720
master
Gethin Norman 17 years ago
parent
commit
4907c9b812
  1. 29
      prism-examples/zeroconf/README
  2. 22
      prism-examples/zeroconf/auto
  3. 268
      prism-examples/zeroconf/zeroconf.nm
  4. 8
      prism-examples/zeroconf/zeroconf.pctl
  5. 270
      prism-examples/zeroconf/zeroconf_time_bounded.nm
  6. 4
      prism-examples/zeroconf/zeroconf_time_bounded.pctl

29
prism-examples/zeroconf/README

@ -0,0 +1,29 @@
This case study concerns the IPv4 Zeroconf Protocol [CAG02]
We consider the probabilistic timed automata models presented in [KNPS06] using
the integer semantics also presented in the paper.
For more information, see: http://www.prismmodelchecker.org/casestudies/zeroconf.php
=====================================================================================
PARAMETERS
reset: reset is true/false dependent on whether the reset/norest model is to be analysed
loss: probability of message (0.1, 0.01, 0.001 and 0)
K: number of probes (4 in standard) 1:1:8
N: number of concrete hosts, e.g. 20 or 1000 for small/large network
err: error cost from 1e+6 to 1e+12
bound: time bound from 0:50 (then set T to be 1+maximum value of bound in experiment)
=====================================================================================
[CAG02]
S. Cheshire and B. Adoba and E. Gutterman
Dynamic configuration of {IPv}4 link local addresses
Available from http://www.ietf.org/rfc/rfc3927.txt
[KNPS06]
M. Kwiatkowska, G. Norman, D. Parker and J. Sproston
Performance Analysis of Probabilistic Timed Automata using Digital Clocks
Formal Methods in System Design, 29:33-78, 2006

22
prism-examples/zeroconf/auto

@ -0,0 +1,22 @@
#!/bin/csh
# example command for minimum probabilistic reachability
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=true -prop 1
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=false -prop 1
# example command for maximum probabilistic reachability
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=true -prop 1
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=false -prop 1
# example command for minimum expected reachability
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=true -prop 1
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=false -prop 1
# example command for maximum expected reachability
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=true -prop 1
prism zeroconf.nm zeroconf.pctl -const N=1000,K=4,loss=0.1,err=0,reset=false -prop 1
# example command for time bounded reachability
prism zeroconf_time_bounded.nm zeroconf_time_bounded.pctl -const N=1000,K=1,loss=0.1,T=11,bound=10,reset=true -fixdl
prism zeroconf_time_bounded.nm zeroconf_time_bounded.pctl -const N=1000,K=1,loss=0.1,T=11,bound=10,reset=false -fixdl

268
prism-examples/zeroconf/zeroconf.nm

@ -0,0 +1,268 @@
// IPv4: PTA model with digitial clocks
// one concrete host attempting to choose an ip address
// when a number of (abstract) hosts have already got ip addresses
// gxn/dxp/jzs 02/05/03
// reset or noreset model
const bool reset;
//-------------------------------------------------------------
// we suppose that the abstract hosts have already picked their addresses
// and always defend their addresses
// we suppose that a host never picks the same ip address twice
// (this can happen only with a verys small probability)
// under these assumptions we do not need message types because:
// 1) since messages to the concrete host will never be a probe,
// this host will react to all messages in the same way
// 2) since the abstract hosts always defend their addresses,
// all messages from the host will get an arp reply if the ip matches
// following from the above assumptions we require only three abstract IP addresses
// (0,1 and 2) which correspond to the following sets of IP addresses:
// 0 - the IP addresses of the abstract hosts which the concrete host
// previously tried to configure
// 1 - an IP address of an abstract host which the concrete host is
// currently trying to configure
// 2 - a fresh IP address which the concrete host is currently trying to configure
// if the host picks an address that is being used it may end up picking another ip address
// in which case there may still be messages corresponding to the old ip address
// to be sent both from and to the host which the host should now disregard
// (since it will never pick the same ip address)
// to deal with this situation: when a host picks a new ip address we reconfigure the
// messages that are still be be sent or are being sent by changing the ip address to 0
// (an old ip address of the host)
// all the messages from the abstract hosts for the 'old' address (in fact the
// set of old addresses since it may have started again more than once)
// can arrive in any order since they are equivalent to the host - it ignores then all
// also the messages for the old and new address will come from different hosts
// (the ones with that ip address) which we model by allowing them to arrive in any order
// i.e. not neccessarily in the order they where sent
//-------------------------------------------------------------
// model is an mdp
nondeterministic
//-------------------------------------------------------------
// VARIABLES
const int N; // number of abstract hosts
const int K; // number of probes to send
const double loss; // probability of message loss
// PROBABILITIES
const double old = N/65024; // probability pick an ip address being used
const double new = (1-old); // probability pick a new ip address
// TIMING CONSTANTS
const int CONSEC = 2; // time interval between sending consecutive probles
const int TRANSTIME = 1; // upper bound on transmission time delay
const int LONGWAIT = 60; // minimum time delay after a high number of address collisions
const int DEFEND = 10;
const int TIME_MAX_X = 2; // max value of clock x
const int TIME_MAX_Y = 60; // max value of clock y
const int TIME_MAX_Z = 1; // max value of clock z
// OTHER CONSTANTS
const int MAXCOLL = 10; // maximum number of collisions before long wait
// size of buffers for other hosts
const int B0 = 20; // buffer size for one abstract host
const int B1 = 8; // buffer sizes for all abstract hosts
//-------------------------------------------------------------
// ENVIRONMENT - models: medium, output buffer of concrete host and all other hosts
module environment
// buffer of concrete host
b_ip7 : [0..2]; // ip address of message in buffer position 8
b_ip6 : [0..2]; // ip address of message in buffer position 7
b_ip5 : [0..2]; // ip address of message in buffer position 6
b_ip4 : [0..2]; // ip address of message in buffer position 5
b_ip3 : [0..2]; // ip address of message in buffer position 4
b_ip2 : [0..2]; // ip address of message in buffer position 3
b_ip1 : [0..2]; // ip address of message in buffer position 2
b_ip0 : [0..2]; // ip address of message in buffer position 1
n : [0..8]; // number of places in the buffer used (from host)
// messages to be sent from abstract hosts to concrete host
n0 : [0..B0]; // number of messages which do not have the host's current ip address
n1 : [0..B1]; // number of messages which have the host's current ip address
b : [0..2]; // local state
// 0 - idle
// 1 - sending message from concrete host
// 2 - sending message from abstract host
z : [0..1]; // clock of environment (needed for the time to send a message)
ip : [0..2]; // ip in the current message being sent
// 0 - different from concrete host
// 1 - same as the concrete host and in use
// 2 - same as the concrete host and not in use
// RESET/RECONFIG: when host is about to choose new ip address
// suppose that the host cannot choose the same ip address
// (since happens with very small probability).
// Therefore all messages will have a different ip address,
// i.e. all n1 messages become n0 ones.
// Note this include any message currently being sent (ip is set to zero 0)
[reset0] true -> (n1'=0) & (n0'=min(B0,n0+n1)) // abstract buffers
& (ip'=0) // message being set
& (n'=(reset)?0:n) // concrete buffer (remove this update to get NO_RESET model)
& (b_ip7'=0)
& (b_ip6'=0)
& (b_ip5'=0)
& (b_ip4'=0)
& (b_ip3'=0)
& (b_ip2'=0)
& (b_ip1'=0)
& (b_ip0'=0);
// note: prevent anything else from happening when reconfiguration needs to take place
// time passage (only if no messages to send or sending a message)
[time] l0>0 & b=0 & n=0 & n0=0 & n1=0 -> (b'=b); // cannot send a message
[time] l0>0 & b>0 & z<1 -> (z'=min(z+1,TIME_MAX_Z)); // sending a message
// get messages to be sent (so message has same ip address as host)
[send0] l0>0 & n=0 -> (b_ip0'=ip0) & (n'=n+1);
[send0] l0>0 & n=1 -> (b_ip1'=ip0) & (n'=n+1);
[send0] l0>0 & n=2 -> (b_ip2'=ip0) & (n'=n+1);
[send0] l0>0 & n=3 -> (b_ip3'=ip0) & (n'=n+1);
[send0] l0>0 & n=4 -> (b_ip4'=ip0) & (n'=n+1);
[send0] l0>0 & n=5 -> (b_ip5'=ip0) & (n'=n+1);
[send0] l0>0 & n=6 -> (b_ip6'=ip0) & (n'=n+1);
[send0] l0>0 & n=7 -> (b_ip7'=ip0) & (n'=n+1);
[send0] l0>0 & n=8 -> (n'=n); // buffer full so lose message
// start sending message from host
[] l0>0 & b=0 & n>0 -> (1-loss) : (b'=1) & (ip'=b_ip0)
& (n'=n-1)
& (b_ip7'=0)
& (b_ip6'=b_ip7)
& (b_ip5'=b_ip6)
& (b_ip4'=b_ip5)
& (b_ip3'=b_ip4)
& (b_ip2'=b_ip3)
& (b_ip1'=b_ip2)
& (b_ip0'=b_ip1) // send message
+ loss : (n'=n-1)
& (b_ip7'=0)
& (b_ip6'=b_ip7)
& (b_ip5'=b_ip6)
& (b_ip4'=b_ip5)
& (b_ip3'=b_ip4)
& (b_ip2'=b_ip3)
& (b_ip1'=b_ip2)
& (b_ip0'=b_ip1); // lose message
// start sending message to host
[] l0>0 & b=0 & n0>0 -> (1-loss) : (b'=2) & (ip'=0) & (n0'=n0-1) + loss : (n0'=n0-1); // different ip
[] l0>0 & b=0 & n1>0 -> (1-loss) : (b'=2) & (ip'=1) & (n1'=n1-1) + loss : (n1'=n1-1); // same ip
// finish sending message from host
[] l0>0 & b=1 & ip=0 -> (b'=0) & (z'=0) & (n0'=min(n0+1,B0)) & (ip'=0);
[] l0>0 & b=1 & ip=1 -> (b'=0) & (z'=0) & (n1'=min(n1+1,B1)) & (ip'=0);
[] l0>0 & b=1 & ip=2 -> (b'=0) & (z'=0) & (ip'=0);
// finish sending message to host
[rec0] l0>0 & b=2 -> (b'=0) & (z'=0) & (ip'=0);
endmodule
//-------------------------------------------------------------
// CONCRETE HOST
module host0
y0 : [0..TIME_MAX_Y]; // second clock of the host
x0 : [0..TIME_MAX_X]; // clock of the host
coll0 : [0..MAXCOLL]; // number of address collisions
probes0 : [0..K]; // counter (number of probes sent)
mess0 : [0..1]; // need to send a message or not
defend0 : [0..1]; // defend (if =1, try to defend IP address)
ip0 : [1..2]; // ip address (1 - in use & 2 - fresh)
l0 : [0..4] init 1; // location
// 0 : RECONFIGURE
// 1 : RANDOM
// 2 : WAITSP
// 3 : WAITSG
// 4 : USE
// RECONFIGURE
[reset0] l0=0 -> (l0'=1);
// RANDOM (choose IP address)
[rec0] (l0=1) -> true; // get message (ignore since have no ip address)
// small number of collisions (choose straight away)
[] l0=1 & coll0<MAXCOLL -> 1/3*old : (l0'=2) & (ip0'=1) & (y0'=0)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=1)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=2)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=0)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=1)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=2);
// large number of collisions: (wait for LONGWAIT)
[time] l0=1 & coll0=MAXCOLL & y0<LONGWAIT -> (y0'=min(y0+1,TIME_MAX_Y));
[] l0=1 & coll0=MAXCOLL & y0=LONGWAIT -> 1/3*old : (l0'=2) & (ip0'=1) & (y0'=0)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=1)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=2)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=0)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=1)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=2);
// WAITSP
// let time pass
[time] l0=2 & y0<2 -> (y0'=min(y0+1,2));
// send probe
[send0] l0=2 & y0=2 & probes0<K -> (y0'=0) & (probes0'=probes0+1);
// sent K probes and waited 2 seconds
[] l0=2 & y0=2 & probes0=K -> (l0'=3) & (probes0'=0) & (coll0'=0) & (y0'=0) & (x0'=2);
// get message and ip does not match: ignore
[rec0] l0=2 & ip!=ip0 -> (l0'=l0);
// get a message with matching ip: reconfigure
[rec0] l0=2 & ip=ip0 -> (l0'=0) & (coll0'=min(coll0+1,MAXCOLL)) & (y0'=0) & (probes0'=0);
// WAITSG (sends two gratuitious arp probes)
// time passage
[time] l0=3 & mess0=0 & defend0=0 & x0<CONSEC -> (x0'=min(x0+1,TIME_MAX_X));
[time] l0=3 & mess0=0 & defend0=1 & x0<CONSEC -> (x0'=min(x0+1,TIME_MAX_X)) & (y0'=min(y0+1,DEFEND));
// receive message and same ip: defend
[rec0] l0=3 & mess0=0 & ip=ip0 & (defend0=0 | y0>=DEFEND) -> (defend0'=1) & (mess0'=1) & (y0'=0);
// receive message and same ip: defer
[rec0] l0=3 & mess0=0 & ip=ip0 & (defend0=0 | y0<DEFEND) -> (l0'=0) & (probes0'=0) & (defend0'=0) & (x0'=0) & (y0'=0);
// receive message and different ip
[rec0] l0=3 & mess0=0 & ip!=ip0 -> (l0'=l0);
// send probe reply or message for defence
[send0] l0=3 & mess0=1 -> (mess0'=0);
// send first gratuitous arp message
[send0] l0=3 & mess0=0 & x0=CONSEC & probes0<1 -> (x0'=0) & (probes0'=probes0+1);
// send second gratuitous arp message (move to use)
[send0] l0=3 & mess0=0 & x0=CONSEC & probes0=1 -> (l0'=4) & (x0'=0) & (y0'=0) & (probes0'=0);
// USE (only interested in reaching this state so do not need to add anything here)
[] l0=4 -> true;
endmodule
//-------------------------------------------------------------
// reward structure
const double err; // cost associated with using a IP address already in use
rewards
[time] true : 1;
[send0] l0=3 & mess0=0 & x0=CONSEC & probes0=1 & ip0=1 : err;
endrewards

8
prism-examples/zeroconf/zeroconf.pctl

@ -0,0 +1,8 @@
// min/max probability of configuring correctly
Pmin=?[ true U (l0=4 & ip0=1) ]
Pmax=?[ true U (l0=4 & ip0=1) ]
// min/max expected cost of configuring
Rmin=?[ F l0=4 ]
Rmax=?[ F l0=4 ]

270
prism-examples/zeroconf/zeroconf_time_bounded.nm

@ -0,0 +1,270 @@
// IPv4: PTA model with digitial clocks
// one concrete host attempting to choose an ip address
// when a number of (abstract) hosts have already got ip addresses
// gxn/dxp/jzs 02/05/03
// reset or noreset model
const bool reset;
//-------------------------------------------------------------
// we suppose that the abstract hosts have already picked their addresses
// and always defend their addresses
// we suppose that a host never picks the same ip address twice
// (this can happen only with a verys small probability)
// under these assumptions we do not need message types because:
// 1) since messages to the concrete host will never be a probe,
// this host will react to all messages in the same way
// 2) since the abstract hosts always defend their addresses,
// all messages from the host will get an arp reply if the ip matches
// following from the above assumptions we require only three abstract IP addresses
// (0,1 and 2) which correspond to the following sets of IP addresses:
// 0 - the IP addresses of the abstract hosts which the concrete host
// previously tried to configure
// 1 - an IP address of an abstract host which the concrete host is
// currently trying to configure
// 2 - a fresh IP address which the concrete host is currently trying to configure
// if the host picks an address that is being used it may end up picking another ip address
// in which case there may still be messages corresponding to the old ip address
// to be sent both from and to the host which the host should now disregard
// (since it will never pick the same ip address)
// to deal with this situation: when a host picks a new ip address we reconfigure the
// messages that are still be be sent or are being sent by changing the ip address to 0
// (an old ip address of the host)
// all the messages from the abstract hosts for the 'old' address (in fact the
// set of old addresses since it may have started again more than once)
// can arrive in any order since they are equivalent to the host - it ignores then all
// also the messages for the old and new address will come from different hosts
// (the ones with that ip address) which we model by allowing them to arrive in any order
// i.e. not neccessarily in the order they where sent
//-------------------------------------------------------------
// model is an mdp
nondeterministic
//-------------------------------------------------------------
// VARIABLES
const int T; // time bound
const int N; // number of abstract hosts
const int K; // number of probes to send
const double loss; // probability of message loss
// PROBABILITIES
const double old = N/65024; // probability pick an ip address being used
const double new = (1-old); // probability pick a new ip address
// TIMING CONSTANTS
const int CONSEC = 2; // time interval between sending consecutive probles
const int TRANSTIME = 1; // upper bound on transmission time delay
const int LONGWAIT = 60; // minimum time delay after a high number of address collisions
const int DEFEND = 10;
const int TIME_MAX_X = 2; // max value of clock x
const int TIME_MAX_Y = 60; // max value of clock y
const int TIME_MAX_Z = 1; // max value of clock z
// OTHER CONSTANTS
const int MAXCOLL = 10; // maximum number of collisions before long wait
// size of buffers for other hosts
const int B0 = 20; // buffer size for one abstract host
const int B1 = 8; // buffer sizes for all abstract hosts
//-------------------------------------------------------------
// ENVIRONMENT - models: medium, output buffer of concrete host and all other hosts
module environment
// buffer of concrete host
b_ip7 : [0..2]; // ip address of message in buffer position 8
b_ip6 : [0..2]; // ip address of message in buffer position 7
b_ip5 : [0..2]; // ip address of message in buffer position 6
b_ip4 : [0..2]; // ip address of message in buffer position 5
b_ip3 : [0..2]; // ip address of message in buffer position 4
b_ip2 : [0..2]; // ip address of message in buffer position 3
b_ip1 : [0..2]; // ip address of message in buffer position 2
b_ip0 : [0..2]; // ip address of message in buffer position 1
n : [0..8]; // number of places in the buffer used (from host)
// messages to be sent from abstract hosts to concrete host
n0 : [0..B0]; // number of messages which do not have the host's current ip address
n1 : [0..B1]; // number of messages which have the host's current ip address
b : [0..2]; // local state
// 0 - idle
// 1 - sending message from concrete host
// 2 - sending message from abstract host
z : [0..1]; // clock of environment (needed for the time to send a message)
ip : [0..2]; // ip in the current message being sent
// 0 - different from concrete host
// 1 - same as the concrete host and in use
// 2 - same as the concrete host and not in use
// RESET/RECONFIG: when host is about to choose new ip address
// suppose that the host cannot choose the same ip address
// (since happens with very small probability).
// Therefore all messages will have a different ip address,
// i.e. all n1 messages become n0 ones.
// Note this include any message currently being sent (ip is set to zero 0)
[reset0] true -> (n1'=0) & (n0'=min(B0,n0+n1)) // abstract buffers
& (ip'=0) // message being set
& (n'=(reset)?0:n) // concrete buffer (remove this update to get NO_RESET model)
& (b_ip7'=0)
& (b_ip6'=0)
& (b_ip5'=0)
& (b_ip4'=0)
& (b_ip3'=0)
& (b_ip2'=0)
& (b_ip1'=0)
& (b_ip0'=0);
// note: prevent anything else from happening when reconfiguration needs to take place
// time passage (only if no messages to send or sending a message)
[time] l0>0 & b=0 & n=0 & n0=0 & n1=0 -> (b'=b); // cannot send a message
[time] l0>0 & b>0 & z<1 -> (z'=min(z+1,TIME_MAX_Z)); // sending a message
// get messages to be sent (so message has same ip address as host)
[send0] l0>0 & n=0 -> (b_ip0'=ip0) & (n'=n+1);
[send0] l0>0 & n=1 -> (b_ip1'=ip0) & (n'=n+1);
[send0] l0>0 & n=2 -> (b_ip2'=ip0) & (n'=n+1);
[send0] l0>0 & n=3 -> (b_ip3'=ip0) & (n'=n+1);
[send0] l0>0 & n=4 -> (b_ip4'=ip0) & (n'=n+1);
[send0] l0>0 & n=5 -> (b_ip5'=ip0) & (n'=n+1);
[send0] l0>0 & n=6 -> (b_ip6'=ip0) & (n'=n+1);
[send0] l0>0 & n=7 -> (b_ip7'=ip0) & (n'=n+1);
[send0] l0>0 & n=8 -> (n'=n); // buffer full so lose message
// start sending message from host
[] l0>0 & b=0 & n>0 -> (1-loss) : (b'=1) & (ip'=b_ip0)
& (n'=n-1)
& (b_ip7'=0)
& (b_ip6'=b_ip7)
& (b_ip5'=b_ip6)
& (b_ip4'=b_ip5)
& (b_ip3'=b_ip4)
& (b_ip2'=b_ip3)
& (b_ip1'=b_ip2)
& (b_ip0'=b_ip1) // send message
+ loss : (n'=n-1)
& (b_ip7'=0)
& (b_ip6'=b_ip7)
& (b_ip5'=b_ip6)
& (b_ip4'=b_ip5)
& (b_ip3'=b_ip4)
& (b_ip2'=b_ip3)
& (b_ip1'=b_ip2)
& (b_ip0'=b_ip1); // lose message
// start sending message to host
[] l0>0 & b=0 & n0>0 -> (1-loss) : (b'=2) & (ip'=0) & (n0'=n0-1) + loss : (n0'=n0-1); // different ip
[] l0>0 & b=0 & n1>0 -> (1-loss) : (b'=2) & (ip'=1) & (n1'=n1-1) + loss : (n1'=n1-1); // same ip
// finish sending message from host
[] l0>0 & b=1 & ip=0 -> (b'=0) & (z'=0) & (n0'=min(n0+1,B0)) & (ip'=0);
[] l0>0 & b=1 & ip=1 -> (b'=0) & (z'=0) & (n1'=min(n1+1,B1)) & (ip'=0);
[] l0>0 & b=1 & ip=2 -> (b'=0) & (z'=0) & (ip'=0);
// finish sending message to host
[rec0] l0>0 & b=2 -> (b'=0) & (z'=0) & (ip'=0);
endmodule
//-------------------------------------------------------------
// CONCRETE HOST
module host0
y0 : [0..TIME_MAX_Y]; // second clock of the host
x0 : [0..TIME_MAX_X]; // clock of the host
coll0 : [0..MAXCOLL]; // number of address collisions
probes0 : [0..K]; // counter (number of probes sent)
mess0 : [0..1]; // need to send a message or not
defend0 : [0..1]; // defend (if =1, try to defend IP address)
ip0 : [1..2]; // ip address (1 - in use & 2 - fresh)
l0 : [0..4] init 1; // location
// 0 : RECONFIGURE
// 1 : RANDOM
// 2 : WAITSP
// 3 : WAITSG
// 4 : USE
// RECONFIGURE
[reset0] l0=0 -> (l0'=1);
// RANDOM (choose IP address)
[rec0] (l0=1) -> true; // get message (ignore since have no ip address)
// small number of collisions (choose straight away)
[] l0=1 & coll0<MAXCOLL -> 1/3*old : (l0'=2) & (ip0'=1) & (y0'=0)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=1)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=2)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=0)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=1)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=2);
// large number of collisions: (wait for LONGWAIT)
[time] l0=1 & coll0=MAXCOLL & y0<LONGWAIT -> (y0'=min(y0+1,TIME_MAX_Y));
[] l0=1 & coll0=MAXCOLL & y0=LONGWAIT -> 1/3*old : (l0'=2) & (ip0'=1) & (y0'=0)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=1)
+ 1/3*old : (l0'=2) & (ip0'=1) & (y0'=2)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=0)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=1)
+ 1/3*new : (l0'=2) & (ip0'=2) & (y0'=2);
// WAITSP
// let time pass
[time] l0=2 & y0<2 -> (y0'=min(y0+1,2));
// send probe
[send0] l0=2 & y0=2 & probes0<K -> (y0'=0) & (probes0'=probes0+1);
// sent K probes and waited 2 seconds
[] l0=2 & y0=2 & probes0=K -> (l0'=3) & (probes0'=0) & (coll0'=0) & (y0'=0) & (x0'=2);
// get message and ip does not match: ignore
[rec0] l0=2 & ip!=ip0 -> (l0'=l0);
// get a message with matching ip: reconfigure
[rec0] l0=2 & ip=ip0 -> (l0'=0) & (coll0'=min(coll0+1,MAXCOLL)) & (y0'=0) & (probes0'=0);
// WAITSG (sends two gratuitious arp probes)
// time passage
[time] l0=3 & mess0=0 & defend0=0 & x0<CONSEC -> (x0'=min(x0+1,TIME_MAX_X));
[time] l0=3 & mess0=0 & defend0=1 & x0<CONSEC -> (x0'=min(x0+1,TIME_MAX_X)) & (y0'=min(y0+1,DEFEND));
// receive message and same ip: defend
[rec0] l0=3 & mess0=0 & ip=ip0 & (defend0=0 | y0>=DEFEND) -> (defend0'=1) & (mess0'=1) & (y0'=0);
// receive message and same ip: defer
[rec0] l0=3 & mess0=0 & ip=ip0 & (defend0=0 | y0<DEFEND) -> (l0'=0) & (probes0'=0) & (defend0'=0) & (x0'=0) & (y0'=0);
// receive message and different ip
[rec0] l0=3 & mess0=0 & ip!=ip0 -> (l0'=l0);
// send probe reply or message for defence
[send0] l0=3 & mess0=1 -> (mess0'=0);
// send first gratuitous arp message
[send0] l0=3 & mess0=0 & x0=CONSEC & probes0<1 -> (x0'=0) & (probes0'=probes0+1);
// send second gratuitous arp message (move to use)
[send0] l0=3 & mess0=0 & x0=CONSEC & probes0=1 -> (l0'=4) & (x0'=0) & (y0'=0) & (probes0'=0);
// USE (only interested in reaching this state so do not need to add anything here)
[done] l0=4 -> true;
endmodule
//-------------------------------------------------------------
// timer
module timer
t : [0..T+1];
[time] t<=T -> (t'=min(t+1,T+1));
[done] l0=4 -> (t'=T+1);
endmodule

4
prism-examples/zeroconf/zeroconf_time_bounded.pctl

@ -0,0 +1,4 @@
// probability of using fresh ip address within time T
const int bound;
Pmin=?[ !(l0=4 & ip0=2) U t>bound ]
Pmax=?[ !(l0=4 & ip0=2) U t>bound ]
Loading…
Cancel
Save