|
|
|
@ -123,7 +123,8 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
mainLog.println("\nComputing reachability probabilities..."); |
|
|
|
mcProduct = new MDPModelChecker(this); |
|
|
|
mcProduct.inheritSettings(this); |
|
|
|
probsProduct = StateValues.createFromDoubleArray(mcProduct.computeReachProbs((MDP)product.getProductModel(), acc, false).soln, product.getProductModel()); |
|
|
|
ModelCheckerResult res = mcProduct.computeReachProbs((MDP) product.getProductModel(), acc, false); |
|
|
|
probsProduct = StateValues.createFromDoubleArray(res.soln, product.getProductModel()); |
|
|
|
|
|
|
|
// Subtract from 1 if we're model checking a negated formula for regular Pmin |
|
|
|
if (minMax.isMin()) { |
|
|
|
@ -202,7 +203,8 @@ public class MDPModelChecker extends ProbModelChecker |
|
|
|
mainLog.println("\nComputing reachability rewards..."); |
|
|
|
mcProduct = new MDPModelChecker(this); |
|
|
|
mcProduct.inheritSettings(this); |
|
|
|
rewardsProduct = StateValues.createFromDoubleArray(mcProduct.computeReachRewards(product.getProductModel(), productRewards, acc, minMax.isMin()).soln, product.getProductModel()); |
|
|
|
ModelCheckerResult res = mcProduct.computeReachRewards(product.getProductModel(), productRewards, acc, minMax.isMin()); |
|
|
|
rewardsProduct = StateValues.createFromDoubleArray(res.soln, product.getProductModel()); |
|
|
|
|
|
|
|
// Output vector over product, if required |
|
|
|
if (getExportProductVector()) { |
|
|
|
|