Browse Source

imported patch tmp-tarjan-iterative-2.patch

tud-infrastructure-2018-10-12
Joachim Klein 7 years ago
parent
commit
02af30b8fe
  1. 280
      prism/src/explicit/SCCComputerTarjanIterative.java

280
prism/src/explicit/SCCComputerTarjanIterative.java

@ -0,0 +1,280 @@
//==============================================================================
//
// Copyright (c) 2002-
// Authors:
// * Christian von Essen <christian.vonessen@imag.fr> (Verimag, Grenoble)
// * Dave Parker <d.a.parker@cs.bham.ac.uk> (University of Birmingham/Oxford)
// * Joachim Klein <klein@tcs.inf.tu-dresden.de> (TU Dresden)
//
//------------------------------------------------------------------------------
//
// This file is part of PRISM.
//
// PRISM is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PRISM is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with PRISM; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
//==============================================================================
package explicit;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Deque;
import java.util.function.IntPredicate;
import prism.PrismComponent;
import prism.PrismException;
/**
* Tarjan's SCC algorithm operating on a Model object, implemented
* without recursion, i.e., using an explicit stack. This allows to
* deal with deep models without exhausting the Java stack.
*/
public class SCCComputerTarjanIterative extends SCCComputer
{
/* The model to compute (B)SCCs for */
private Model model;
/* Number of nodes (model states) */
private int numNodes;
/* Next index to give to a node */
private int index = 0;
/* Stack of nodes */
private Deque<Integer> stack = new ArrayDeque<Integer>();
/* Nodes currently on the stack. */
private BitSet onStack = new BitSet();
/** The lowlink information for the nodes (states) */
private int[] nodeLowlink;
/** The index information for the nodes (states) */
private int[] nodeIndex;
/** The stack for simulating the recursive calls of Tarjan's algorithm */
private Deque<StackFrame> recursionStack = new ArrayDeque<>();
/**
* Set to remember those states that had a direct self loop
* (to distinguish between trivial and non-trivial single state SCCs
* if we have to filter the former).
*/
private BitSet statesWithSelfloop;
/** Should we filter trivial SCCs? */
private boolean filterTrivialSCCs;
/**
* (optional) A predicate to restrict the explored state space
* and transition relation to those states that satisfy restrict
*/
private IntPredicate restrict;
/**
* Build (B)SCC computer for a given model.
*/
public SCCComputerTarjanIterative(PrismComponent parent, Model model, SCCConsumer consumer) throws PrismException
{
super(parent, consumer);
this.model = model;
this.numNodes = model.getNumStates();
nodeLowlink = new int[numNodes];
Arrays.fill(nodeLowlink, -1);
nodeIndex = new int[numNodes];
Arrays.fill(nodeIndex, -1);
}
// Methods for SCCComputer interface
@Override
public void computeSCCs(boolean filterTrivialSCCs, IntPredicate restrict) throws PrismException
{
this.filterTrivialSCCs = filterTrivialSCCs;
if (filterTrivialSCCs)
statesWithSelfloop = new BitSet();
consumer.notifyStart(model);
this.restrict = restrict;
tarjan();
consumer.notifyDone();
}
// SCC Computation
/**
* Execute Tarjan's algorithm. Determine maximal strongly connected components
* (SCCS) for the graph of the model and report to the consumer.
*/
public void tarjan() throws PrismException
{
for (int i = 0; i < numNodes; i++) {
if (restrict != null && !restrict.test(i))
continue; // skip state if not one of the relevant states
if (nodeLowlink[i] == -1) {
beginVisit(i);
loop();
}
}
}
/**
* Begin the visit to node i.
*/
private void beginVisit(int i)
{
// initialise index and lowindex
nodeIndex[i] = index;
nodeLowlink[i] = index;
index++;
// push on Tarjan stack
stack.push(i);
onStack.set(i);
// push corresponding frame (state and successor iterator) on the recursion stack
recursionStack.push(new StackFrame(i, model.getSuccessors(i)));
}
/** Main loop, process the recursion stack until empty */
private void loop() throws PrismException
{
while (!recursionStack.isEmpty()) {
StackFrame frame = recursionStack.peek();
// the current node
int v = frame.getNode();
if (frame.hasPending()) {
// first, finish the visit of the previous edge, if there was one
int w = frame.getPending();
nodeLowlink[v] = Math.min(nodeLowlink[v], nodeLowlink[w]);
}
final int w = frame.nextSuccessor(restrict);
if (w != -1) {
if (v == w) {
// a self loop
if (statesWithSelfloop != null)
statesWithSelfloop.set(v);
// ignore this edge, continue with loop
frame.clearPending();
continue;
}
if (nodeIndex[w] == -1) {
// setup visit of successor w, then continue with loop
beginVisit(w);
continue;
} else if (onStack.get(w)) {
// back edge, update lowlink, don't explore successor
nodeLowlink[v] = Math.min(nodeLowlink[v], nodeIndex[w]);
}
// the current edge v->w is not actually explored,
// so we clear the pending successor (w) in the frame
// and continue with the loop
frame.clearPending();
continue;
}
// no more successors for this frame, remove from recursion stack
recursionStack.pop();
// finished exploring node v, perform necessary steps
if (nodeLowlink[v] == nodeIndex[v]) {
// we have found the root node of an SCC
// this is a singleton SCC if the top of the stack equals i
boolean singletonSCC = (stack.peek() == v);
if (singletonSCC && filterTrivialSCCs) {
if (!statesWithSelfloop.get(v)) {
// singleton SCC & no selfloop -> trivial
// ignore this SCC and cleanup the Tarjan stack
stack.pop();
onStack.set(v, false);
continue;
}
}
int n;
consumer.notifyStartSCC();
do {
n = stack.pop();
onStack.set(n, false);
consumer.notifyStateInSCC(n);
} while (n != v);
consumer.notifyEndSCC();
}
}
}
/**
* The stack frame with all the information for Tarjan's algorithm
* (current node, successor iterator, currently explored edge).
*/
private static class StackFrame {
/** The current 'from' node */
int node;
/** The iterator over the successors */
private SuccessorsIterator it;
/** The successor that is currently explored (-1 = none) */
private int pending = -1;
/** Constructor */
StackFrame(int node, SuccessorsIterator it) {
this.node = node;
this.it = it;
}
/** Get the current node */
public int getNode()
{
return node;
}
/**
* Returns the next successor. If there is none, returns {@code -1}.
* If restrict is non-null, only those successors that satisfy restrict are returned.
*/
public int nextSuccessor(IntPredicate restrict)
{
while (it.hasNext()) {
int i = it.nextInt();
if (restrict != null && !restrict.test(i))
// skip
continue;
pending = i;
return i;
}
return -1;
}
/** Do we have a successor whose edge is currently explored? */
public boolean hasPending()
{
return pending != -1;
}
/** Return (and clear) the current pending successor */
public int getPending() {
int p = pending;
pending = -1;
return p;
}
/** Clear the current pending successor */
public void clearPending()
{
pending = -1;
}
}
}
Loading…
Cancel
Save