1 changed files with 280 additions and 0 deletions
@ -0,0 +1,280 @@ |
|||
//============================================================================== |
|||
// |
|||
// Copyright (c) 2002- |
|||
// Authors: |
|||
// * Christian von Essen <christian.vonessen@imag.fr> (Verimag, Grenoble) |
|||
// * Dave Parker <d.a.parker@cs.bham.ac.uk> (University of Birmingham/Oxford) |
|||
// * Joachim Klein <klein@tcs.inf.tu-dresden.de> (TU Dresden) |
|||
// |
|||
//------------------------------------------------------------------------------ |
|||
// |
|||
// This file is part of PRISM. |
|||
// |
|||
// PRISM is free software; you can redistribute it and/or modify |
|||
// it under the terms of the GNU General Public License as published by |
|||
// the Free Software Foundation; either version 2 of the License, or |
|||
// (at your option) any later version. |
|||
// |
|||
// PRISM is distributed in the hope that it will be useful, |
|||
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
// GNU General Public License for more details. |
|||
// |
|||
// You should have received a copy of the GNU General Public License |
|||
// along with PRISM; if not, write to the Free Software Foundation, |
|||
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|||
// |
|||
//============================================================================== |
|||
|
|||
package explicit; |
|||
|
|||
import java.util.ArrayDeque; |
|||
import java.util.Arrays; |
|||
import java.util.BitSet; |
|||
import java.util.Deque; |
|||
import java.util.function.IntPredicate; |
|||
|
|||
import prism.PrismComponent; |
|||
import prism.PrismException; |
|||
|
|||
/** |
|||
* Tarjan's SCC algorithm operating on a Model object, implemented |
|||
* without recursion, i.e., using an explicit stack. This allows to |
|||
* deal with deep models without exhausting the Java stack. |
|||
*/ |
|||
public class SCCComputerTarjanIterative extends SCCComputer |
|||
{ |
|||
/* The model to compute (B)SCCs for */ |
|||
private Model model; |
|||
/* Number of nodes (model states) */ |
|||
private int numNodes; |
|||
|
|||
/* Next index to give to a node */ |
|||
private int index = 0; |
|||
/* Stack of nodes */ |
|||
private Deque<Integer> stack = new ArrayDeque<Integer>(); |
|||
/* Nodes currently on the stack. */ |
|||
private BitSet onStack = new BitSet(); |
|||
|
|||
/** The lowlink information for the nodes (states) */ |
|||
private int[] nodeLowlink; |
|||
/** The index information for the nodes (states) */ |
|||
private int[] nodeIndex; |
|||
|
|||
/** The stack for simulating the recursive calls of Tarjan's algorithm */ |
|||
private Deque<StackFrame> recursionStack = new ArrayDeque<>(); |
|||
|
|||
/** |
|||
* Set to remember those states that had a direct self loop |
|||
* (to distinguish between trivial and non-trivial single state SCCs |
|||
* if we have to filter the former). |
|||
*/ |
|||
private BitSet statesWithSelfloop; |
|||
|
|||
/** Should we filter trivial SCCs? */ |
|||
private boolean filterTrivialSCCs; |
|||
|
|||
/** |
|||
* (optional) A predicate to restrict the explored state space |
|||
* and transition relation to those states that satisfy restrict |
|||
*/ |
|||
private IntPredicate restrict; |
|||
|
|||
/** |
|||
* Build (B)SCC computer for a given model. |
|||
*/ |
|||
public SCCComputerTarjanIterative(PrismComponent parent, Model model, SCCConsumer consumer) throws PrismException |
|||
{ |
|||
super(parent, consumer); |
|||
this.model = model; |
|||
this.numNodes = model.getNumStates(); |
|||
nodeLowlink = new int[numNodes]; |
|||
Arrays.fill(nodeLowlink, -1); |
|||
nodeIndex = new int[numNodes]; |
|||
Arrays.fill(nodeIndex, -1); |
|||
} |
|||
|
|||
// Methods for SCCComputer interface |
|||
|
|||
@Override |
|||
public void computeSCCs(boolean filterTrivialSCCs, IntPredicate restrict) throws PrismException |
|||
{ |
|||
this.filterTrivialSCCs = filterTrivialSCCs; |
|||
if (filterTrivialSCCs) |
|||
statesWithSelfloop = new BitSet(); |
|||
consumer.notifyStart(model); |
|||
this.restrict = restrict; |
|||
tarjan(); |
|||
consumer.notifyDone(); |
|||
} |
|||
|
|||
// SCC Computation |
|||
|
|||
/** |
|||
* Execute Tarjan's algorithm. Determine maximal strongly connected components |
|||
* (SCCS) for the graph of the model and report to the consumer. |
|||
*/ |
|||
public void tarjan() throws PrismException |
|||
{ |
|||
for (int i = 0; i < numNodes; i++) { |
|||
if (restrict != null && !restrict.test(i)) |
|||
continue; // skip state if not one of the relevant states |
|||
if (nodeLowlink[i] == -1) { |
|||
beginVisit(i); |
|||
loop(); |
|||
} |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* Begin the visit to node i. |
|||
*/ |
|||
private void beginVisit(int i) |
|||
{ |
|||
// initialise index and lowindex |
|||
nodeIndex[i] = index; |
|||
nodeLowlink[i] = index; |
|||
index++; |
|||
// push on Tarjan stack |
|||
stack.push(i); |
|||
onStack.set(i); |
|||
// push corresponding frame (state and successor iterator) on the recursion stack |
|||
recursionStack.push(new StackFrame(i, model.getSuccessors(i))); |
|||
} |
|||
|
|||
/** Main loop, process the recursion stack until empty */ |
|||
private void loop() throws PrismException |
|||
{ |
|||
while (!recursionStack.isEmpty()) { |
|||
StackFrame frame = recursionStack.peek(); |
|||
// the current node |
|||
int v = frame.getNode(); |
|||
|
|||
if (frame.hasPending()) { |
|||
// first, finish the visit of the previous edge, if there was one |
|||
int w = frame.getPending(); |
|||
nodeLowlink[v] = Math.min(nodeLowlink[v], nodeLowlink[w]); |
|||
} |
|||
|
|||
final int w = frame.nextSuccessor(restrict); |
|||
if (w != -1) { |
|||
if (v == w) { |
|||
// a self loop |
|||
if (statesWithSelfloop != null) |
|||
statesWithSelfloop.set(v); |
|||
|
|||
// ignore this edge, continue with loop |
|||
frame.clearPending(); |
|||
continue; |
|||
} |
|||
|
|||
if (nodeIndex[w] == -1) { |
|||
// setup visit of successor w, then continue with loop |
|||
beginVisit(w); |
|||
continue; |
|||
} else if (onStack.get(w)) { |
|||
// back edge, update lowlink, don't explore successor |
|||
nodeLowlink[v] = Math.min(nodeLowlink[v], nodeIndex[w]); |
|||
} |
|||
// the current edge v->w is not actually explored, |
|||
// so we clear the pending successor (w) in the frame |
|||
// and continue with the loop |
|||
frame.clearPending(); |
|||
continue; |
|||
} |
|||
|
|||
// no more successors for this frame, remove from recursion stack |
|||
recursionStack.pop(); |
|||
|
|||
// finished exploring node v, perform necessary steps |
|||
if (nodeLowlink[v] == nodeIndex[v]) { |
|||
// we have found the root node of an SCC |
|||
|
|||
// this is a singleton SCC if the top of the stack equals i |
|||
boolean singletonSCC = (stack.peek() == v); |
|||
if (singletonSCC && filterTrivialSCCs) { |
|||
if (!statesWithSelfloop.get(v)) { |
|||
// singleton SCC & no selfloop -> trivial |
|||
// ignore this SCC and cleanup the Tarjan stack |
|||
stack.pop(); |
|||
onStack.set(v, false); |
|||
continue; |
|||
} |
|||
} |
|||
|
|||
int n; |
|||
consumer.notifyStartSCC(); |
|||
do { |
|||
n = stack.pop(); |
|||
onStack.set(n, false); |
|||
consumer.notifyStateInSCC(n); |
|||
} while (n != v); |
|||
consumer.notifyEndSCC(); |
|||
} |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* The stack frame with all the information for Tarjan's algorithm |
|||
* (current node, successor iterator, currently explored edge). |
|||
*/ |
|||
private static class StackFrame { |
|||
/** The current 'from' node */ |
|||
int node; |
|||
/** The iterator over the successors */ |
|||
private SuccessorsIterator it; |
|||
/** The successor that is currently explored (-1 = none) */ |
|||
private int pending = -1; |
|||
|
|||
/** Constructor */ |
|||
StackFrame(int node, SuccessorsIterator it) { |
|||
this.node = node; |
|||
this.it = it; |
|||
} |
|||
|
|||
/** Get the current node */ |
|||
public int getNode() |
|||
{ |
|||
return node; |
|||
} |
|||
|
|||
/** |
|||
* Returns the next successor. If there is none, returns {@code -1}. |
|||
* If restrict is non-null, only those successors that satisfy restrict are returned. |
|||
*/ |
|||
public int nextSuccessor(IntPredicate restrict) |
|||
{ |
|||
while (it.hasNext()) { |
|||
int i = it.nextInt(); |
|||
if (restrict != null && !restrict.test(i)) |
|||
// skip |
|||
continue; |
|||
|
|||
pending = i; |
|||
return i; |
|||
} |
|||
return -1; |
|||
} |
|||
|
|||
/** Do we have a successor whose edge is currently explored? */ |
|||
public boolean hasPending() |
|||
{ |
|||
return pending != -1; |
|||
} |
|||
|
|||
/** Return (and clear) the current pending successor */ |
|||
public int getPending() { |
|||
int p = pending; |
|||
pending = -1; |
|||
return p; |
|||
} |
|||
|
|||
/** Clear the current pending successor */ |
|||
public void clearPending() |
|||
{ |
|||
pending = -1; |
|||
} |
|||
|
|||
} |
|||
|
|||
} |
|||
Write
Preview
Loading…
Cancel
Save
Reference in new issue